Metallurgical and Materials Transactions B

, Volume 2, Issue 11, pp 3175–3188 | Cite as

Gaseous reduction of iron oxides: Part I. Reduction of hematite in hydrogen

  • E. T. Turkdogan
  • J. V. Vinters
Process Metallurgy

Abstract

The reduction of high-grade hematite ore in hydrogen has been investigated. There is an unusual temperature effect for small granules with a dip in the rate at about 700°C, similar to those reported by previous investigators for different types of iron oxides. The particlesize effect on the time of reduction suggests that there are three major limiting rate-controlling processes: i) uniform internal reduction, ii) limiting mixed control and iii) gas diffusion in porous iron layer. Processes (ii) and (iii) are special cases of a so-called topochemical mode of reduction associated with the formation of product layers. Unidirectional reduction experiments revealed the significant role played by gas diffusion in porous iron layer as a rate-controlling process. The effective H2-H2O diffusivity in porous iron derived from, the reduction data is found to decrease markedly with decreasing reduction temperature. This is consistent with the fracture surfaces of porous iron as viewed by scanning electron microscopy. The present interpretation of the rate of reduction of hematite ore is found to apply equally well to previously published data on the hydrogen-reduction of natural and synthetic hematite pellets.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. M. McKewan:Steelmaking, The Chipman Conference, pp. 141–55, MIT Press, 1965;Trans. TMS-AIME, 1960, vol. 218, pp. 2–6.Google Scholar
  2. 2.
    J. M. Quets, M. E. Wadsworth, and J. R. Lewis:Trans. TMS-AIME, 1960, vol. 218, pp. 545–50;Trans. TMS-AIME, 1961, vol. 221, pp. 1186–93.Google Scholar
  3. 3.
    N. J. Themelis and W. H. Gauvin:A.I.Ch.E.J., 1962, vol. 8, pp. 437–44;Trans. TMS-AIME, 1963, vol. 227, pp. 290–300.Google Scholar
  4. 4.
    N. A. Warner:Trans. TMS-AIME, 1964, vol. 230, pp. 163–78.Google Scholar
  5. 5.
    R. H. Spitzer, F. S. Manning, and W. O. Philbrook:Trans. TMS-AIME, 1966, vol. 236, pp. 726–42.Google Scholar
  6. 6.
    R. G. Olsson and W. M. McKewan:Trans. TMS-AIME, 1966, vol. 236, pp. 1518–22.Google Scholar
  7. 7.
    R. G. Olsson and W. M. McKewan:Met. Trans., 1970, vol. 1, pp. 1507–12.CrossRefGoogle Scholar
  8. 8.
    T. L. Joseph:Trans. AIME, 1936, vol. 120, pp. 72–90.Google Scholar
  9. 9.
    R. P. Smith: Edgar C. Bain Laboratory for Fundamental Research, U.S. Steel Corp., Monroeville, Pa., private communication.Google Scholar
  10. 10.
    J. O. Edstrom:J. Iron Steel Inst., 1953, vol. 175, pp. 289–304.Google Scholar
  11. 11.
    M. C. Udy and C. H. Lorig:Trans. AIME, 1943, vol. 354, pp. 162–81.Google Scholar
  12. 12.
    J. Henderson:J. Australian Inst. Metals, 1962, vol. 7, pp. 115–21;AIME Conf. 8 Phys. Chem. Process Met., pp. 671–85, Interscience, New York, 1961.Google Scholar
  13. 13.
    W. Wenzel, H. W. Gudenau, and M. Ponthenkandath:Aufbereitungs. Technik, 1970, no. 8, pp. 492–94.Google Scholar
  14. 14.
    R. H. Tien and E. T. Turkdogan:Carbon, In Press.Google Scholar
  15. 15.
    E. W. Thiele:Ind. Eng. Chem., 1939, vol. 31, pp. 916–20.CrossRefGoogle Scholar
  16. 16.
    B. B. L. Seth and H. U. Ross:Trans. TMS-AIME, 1965, vol. 233, pp. 180–85.Google Scholar
  17. 17.
    J. Crank:The Mathematics of Diffusion, Oxford University Press, 1956.Google Scholar
  18. 18.
    J. A. Currie:Brit. J. Appl. Phys., 1960, vol. 11, pp. 318–24.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society - ASM International - The Materials Information Society 1971

Authors and Affiliations

  • E. T. Turkdogan
    • 1
  • J. V. Vinters
    • 1
  1. 1.Fandamental Research LaboratoryU.S. Steel Corporation, Research CenterMonrocville

Personalised recommendations