Skip to main content
Log in

Kinetics of zinc oxide reduction with carbon monoxide

  • Process Metallurgy
  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

Reduction of ZnO single particles with CO was investigated at atmospheric pressure from 1000° to 1500°C. Weight loss data up to about 90 pct reduction were easily reproducible for the dense photoconductive grade ZnO particles but not for the American grade samples, whose scatter was attributed to the 13 pct residual internal porosity and to impurities. The data agreed closely with a mixed regime model, which pictures external diffusion acting in series with an irreversible first order kinetic process at the surface. After the diffusional contribution was subtracted, activation energies of 37,900 (±2040) cal per mole and 20,600 (±10,200) cal per mole were obtained for the photoconductive and American grades, respectively. For the photoconductive grade the mixed regime model gave a good fit over the entire temperature range. Diffusional limitations were approached at 1500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Tammann and A. Ya. Zvorukin:Z. Anorg. Allgem. Chem., 1928, vol. 170, pp. 62–70.

    Article  CAS  Google Scholar 

  2. W. Baukloh and F. Springorum:Z. Anorg. Allgem. Chem., 1937, vol. 230, pp. 315–20.

    Article  CAS  Google Scholar 

  3. M. Bodenstein:Trans. Am. Electrochem. Soc., 1927, vol. 51, pp. 365–76.

    Google Scholar 

  4. P. V. Gel'd,et al.:Doklady Akad. Nauk. SSSR, 1951, vol. 78, pp. 693–96.

    Google Scholar 

  5. P. V. Gel'd,et al.:Zhur. Priklad. Khim., 1952, vol. 25, pp. 121–33.

    Google Scholar 

  6. A. D'Hooghe:Bull. Sci. Acad. Roy. Belg., 1923, vol. 9, No. 5, pp. 323–26;Chem. Zentr., 1924, vol. I, pp. 409–10.

    Google Scholar 

  7. J. S. Anderson:Discussions Faraday Soc., 1948, No. 4, pp. 163–73.

    Article  Google Scholar 

  8. W. A. Oates and D. D. Todd:J. Australian Inst. Metals, 1962, vol. 7, pp. 109–14.

    CAS  Google Scholar 

  9. K. Hauffe:Informal Proc. Buhl Intern. Conf. Mater., Pittsburgh, 1963; 1964, pp. 37–51.

  10. T. Imoto,et al.:Nippon Kagaku Zasshi, 1964, vol. 85, No. 1, pp. 9–13.

    CAS  Google Scholar 

  11. T. Imoto,et al.:Nippon Kagaku Zasshi, 1964, vol. 85, No. 12, pp. 843–45.

    CAS  Google Scholar 

  12. E. C. Truesdale and R. K. Waring:AIME Trans., 1944, vol. 159, p. 97.

    Google Scholar 

  13. C. E. Guger: Ph.D. Thesis, Department of Chemical Engineering, Carnegie-Mellon University, Pittsburgh, Pa., pp. 19–39, 1969.

  14. H. L. Toor, and K. R. Arnold:I&EC Fund., 1965, vol. 4, p. 363.

    Article  Google Scholar 

  15. R. B. Bird, W. E. Stewart, and E. N. Lightfoot:Transport Phenomena, pp. 658–66, J. Wiley and Sons, New York, 1960.

    Google Scholar 

  16. W. E. Ranz and W. R. Marshall, Jr.:Chem. Eng. Progr., 1952, vol. 48, pp. 141–46, 173–80.

    CAS  Google Scholar 

  17. N. Scrivner: Ph.D. Thesis, Department of Chemical Engineering, Carnegie-Mellon University, Pittsburgh, Pa.; C. E. Guger, Ph.D. Thesis, pp. 55–57, 1969.

  18. C. E. Guger: Ph.D. Thesis, pp. 99–100, 1969.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guger, C.E., Manning, F.S. Kinetics of zinc oxide reduction with carbon monoxide. Metall Trans 2, 3083–3090 (1971). https://doi.org/10.1007/BF02814959

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814959

Keywords

Navigation