Skip to main content
Log in

Light-front quantization and the phase transition in (ϕ4)2 theory

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

The light-front Hamiltonian formulation for the scalar field theory described in the continuum, which contains also a constraint equation, is constructed and compared with the equal-time formulation. In the two-dimensional case the mass renormalization condition and the renormalized constraint equation are shown to contain the information necessary to describe the phase transition in the ϕ4 theory and it is found to be of the second order. We argue that the same result is obtained also in the conventional equal-time formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac P. A. M.,Rev. Mod. Phys.,21 (1949) 392.

    Article  MathSciNet  ADS  Google Scholar 

  2. Weinberg S.,Phys. Rev.,150 (1966) 1313.

    Article  ADS  Google Scholar 

  3. Kogut J. B. andSoper D. E.,Phys. Rev. D,1 (1970) 2901.

    Article  ADS  Google Scholar 

  4. Fubini S., Furlan G. andRossetti C.,Nuovo Cimento,40 (1965) 1171;Leutwyler H.,Springer Tracts Mod. Phys.,50 (1969) 29;Rohrlich F.,Acta Phys. Austr.,32 (1970) 87.

    Article  MathSciNet  ADS  Google Scholar 

  5. Wilson K. G.,Nucl. Phys. B (Proc. Suppl.),17 (1990) 82;Perry R. J., Harindranath A. andWilson K. G.,Phys. Rev. Lett.,65 (1990) 2959.

    Article  ADS  Google Scholar 

  6. Brodsky S. J. andPauli H. C.,Schladming Lectures SLAC preprint SLAC-PUB-5558/91.

  7. Srivastava P. P.,Higgs mechanism (tree level) in light-front quantized field theory, Ohio State preprint 92-0012, SLAC data base PPF-9202, December 91;Spontaneous symmetry breaking mechanism in light-front quantized field theory-Discretized formulation, Ohio State preprint 92-0173, SLAC/PPF-9222, April 1992;The existence of the continuum limit is shown; papers contributed toXXVI International Conference on High Energy Physics, Dallas, Texas, August 92, edited byJ. R. Sanford,AIP Conf. Proc.,272 (1993) 2125;Nuovo Cimento A,107 (1994) 549. See also ref. [6] andLectures at the XIV Brazilian National Meeting on Particles and Fields, Caxambu, MG (Sociedade Brasileira de Física) 1993, pp. 154–192, available from hep-th@xxx.lanl. gov No. 9312064.

    Google Scholar 

  8. The constraint equation in the two-dimensional discretized formulation (with finite extension in thex-coordinate) was noted earlier but its consequences were not appreciated. See for example,Maskawa T. andYamawaki K.,Prog. Theor. Phys.,56 (1976) 270;Nakanishi N. andYamawaki K.,Nucl. Phys. B,122 (1977) 15;Wittman R. S., inNuclear and Particle Physics on the Light-Cone, edited byM. B. Johnson andL. S. Kisslinger (World Scientific, Singapore) 1989. In ref. [7] it was obtained directly in the continuum formulation as a second-class constraint which was also implemented in the theory following the Dirac procedure.

    Article  MathSciNet  ADS  Google Scholar 

  9. Dirac P. A. M.,Lectures in Quantum Mechanics (Benjamin, New York, N.Y.) 1964;Sudarshan E. C. G. andMukunda N.,Classical Dynamics: a Modern Perspective (Wiley, New York, N.Y.) 1974;Hanson A., Regge T. andTeitelboim C.,Constrained Hamiltonian Systems (Accademia nazionale dei Lincei, Roma) 1976.

    Google Scholar 

  10. See, for example,Callaway D. J. F.,Phys. Rep.,167 (1988) 241.

    Article  ADS  Google Scholar 

  11. Simon B. andGriffiths R. B.,Commun. Math. Phys.,33 (1973) 145;Simon B.,The P(Φ)2 Euclidean (Quantum) Field Theory (Princeton University Press, Princeton, N.J.) 1974.

    Article  MathSciNet  ADS  Google Scholar 

  12. See, for example,Consoli M. andCiancitto A.,Nucl. Phys. B,254 (1985) 653;Stevenson P. M.,Phys. Rev. D,32, (1985) 1389;Chang S. J.,Phys. Rev. D,13, (1976) 2778.

    Article  ADS  Google Scholar 

  13. Efimov G. V.,Int. J. Mod. Phys. A,4 (1989) 4977.

    Article  ADS  Google Scholar 

  14. Harindranath A. andVary J. P.,Phys. Rev. D,37 (1985) 1389.

    Google Scholar 

  15. Funke M., Kaulfuss U. andKummel H.,Phys. Rev. D,35 (1987) 621.

    Article  ADS  Google Scholar 

  16. Polley L. andRitschel U.,Phys. Lett. B,221 (1989) 44.

    Article  ADS  Google Scholar 

  17. Itzykson C. andZuber J. B.,Quantum Field Theory (McGraw-Hills) 1980);Parisi G.,Statistical Field Theory (Addison-Wesley) 1988.

  18. See, also,Schlieder S. andSeiler E.,Commun. Math. Phys.,25 (1972) 62.

    Article  MathSciNet  ADS  Google Scholar 

  19. See, for example,Harindranath A. andPerry R. J.,Phys. Rev. D,43 (1991) 492.

    Article  ADS  Google Scholar 

  20. From the momentum space expansion of ϕ the free (light front) propagator is derived to beiG 0(x;0)≡<0|T(φ(x,τ)φ(0,0))|0>=∫(dkk)θ(τ)exp[−i(kx k τ)]+θ(−τ)· exp[i(kx k τ)]], where 2kɛ k =M 20 . On using the well-known integral representation of ϑ(τ) and the identity [ϑ(k)+ϑ(−k)]=1, true in the sense of distribution theory, it may be rewritten as ∫∫(dk +dk (2π)2)[i(2k + k M 20 +) exp[−i(k + x +k x +)]. Herek ± are now dummy variables taking values from −∞ to ∞ and theintegration over k is understood to be performed first. This is exactly like the discussion in the equal-time case where we find that the integral over the time component is understood to be done first (e.g., see alsoSchweber S. S.,Relativistic Quantum Field Theory (Row, Peterson and Co., New York, N.Y.) 1961, p. 443). In order to arrive at (3.2) we make a change of variables from (k ,k +) to (k ,k +) to (k 0=(k +k +)/√2,k +) so that the integration over the new variablek 0 is now to be performed first. From (2k + k M 20 +iɛ)−1=[2k (√2k 0k +)−M 20 +iɛ)]−1, it follows that the pole in the variablek 0 is situated at [k++M 20 (2k +)−iɛ/(2k +)]/√2. It lies in the fourth quadrant below the real axis in the complexk 0 plane fork +>0 and in the second quadrant above the real axis fork +<0. Hence the (usual) Wick rotation is allowed to be performed in the variablek 0. We may then make another change of variables (k 0),k + to (k 0,k 1=[√2k +k 0]) so that 2k + k = (k 0 2k 1 2) Upon performing a Wick rotation ink 0 we obtain the Euclidean space integral used in the text.

    MATH  Google Scholar 

  21. Collins J.,Renormalization (Cambridge University Press, Cambridge) 1984.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Srivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srivastava, P.P. Light-front quantization and the phase transition in (ϕ4)2 theory. Nuov Cim A 108, 35–45 (1995). https://doi.org/10.1007/BF02814855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814855

PACS

Navigation