Skip to main content
Log in

l-threonine production by polyauxotrophic mutants ofArthrobacter globiformis

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

A number of methionine, methionine+lysine-, and (methionine+lysine+isoleucine)-auxotrophic mutants producing threonine have been isolated from a glutamate-producing strain ofArthrobacter globiformis by a three-step mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. The best double mutant ML24 requiring methionine and lysine for growth produced 3.2 gl-threonine per L in the synthetic Alföldi medium (200 mmol/L) glucose, 80 mmol/L ammonium nitrate) supplemented with 5 μg biotin per L and optimum (0.5 mmol/L) methionine and lysine concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aida K., Nakamura, T., Takahasi Y., Shirai T.:l-Threonine.Ger. Pat. 2 044 907 (1971).

  • Alföldi L.: La production induite de megacine en milieu synthetique.Ann. Inst. Pasteur 94, 474–485 (1958).

    Google Scholar 

  • Adelberg E.A., Morton M., Grace Chem C.C.: Optimal condition for mutagenesis by N-methyl-N′-nitro-N-nitrosoguanidine inEscherichia coli K12.Biochem. Biophys. Res. Commun. 18, 788–795 (1965).

    Article  CAS  Google Scholar 

  • Bernfeld P.: Amylases α and β.Methods Enzymol. 1, 149–158 (1955).

    Article  Google Scholar 

  • Davis B.D., Mingioli E.S.: Mutant ofE. coli requiring methionine or vitamin B12 J. Bacteriol. 60, 17–28 (1950).

    PubMed  CAS  Google Scholar 

  • Debabov V.G.: pp. 254–258 in I. Ikeda, O. Beppu (Eds).Genetics of Industrial Microorganisms. Kodansha, Tokyo 1982.

    Google Scholar 

  • Fuji Y., Shibuya I., Ljiye H., Kojima M., Togawa H., Uyemura T.: Amino Acids 1–74 (1959); cited afterMicrobial Technology (H.J. Peppler, Ed.), p. 324 Reinhold Publ. Co., New York 1967.

  • Huang H.T.:l-Threonine.US Pat. 2 937 121 (1960); cited afterMicrobial Technology (H.J. Peppler, Ed.), p. 324. Reinhold Publ. Co. New York 1967.

  • Huang H.T.: Production ofl-threonine by auxotrophic mutants ofE. coli.Appl. Microbiol. 9, 419–424 (1961).

    PubMed  CAS  Google Scholar 

  • Huang Ho Rung, Wang Xiu Ling, Li Lin Go, Li Zhi Ming, Che Noi: Cultural condition forl-threonine fermentation and identification of fermentation product.Acta Microbiol. Sinica 22, 345–352 (1982).

    Google Scholar 

  • Kase H., Nakayama K.: Studies onl-threonine fermentation. Part I. Production ofl-threonine by auxotrophic mutants of various bacteria.Agric. Biol. Chem. 35, 2089–2096 (1971).

    CAS  Google Scholar 

  • Kase H., Nakayama K.: Production ofl-threonine by analogue resistant mutants.Agric. Biol. Chem. 36, 1611–1621 (1972).

    CAS  Google Scholar 

  • Kinoshita S., Akita S.:l-Glutamic acid preparation by fermentation.Japan Pat. Sho 328 698 (1957).

  • Komatsubara S., Kisumi M., Chibata I.: Threonine production by ethionine resistant mutants ofS. marcescens.Appl. Environ. Microb. 45, 1437 (1983).

    CAS  Google Scholar 

  • Kyowa Hakko Kogyo Co.: Production ofl-threonine.US Pat. 3 647 628;Microbiol. Abstr. 9 (10), 2 (1974).

  • Lederberg J., Lederberg E.M.: Replica plating and indirect selection of bacterial mutants.J. Bacteriol. 63, 399–406 (1952).

    PubMed  CAS  Google Scholar 

  • Murgov I., Ploshchakova M.: Biosynthesis of threonine and lysine byB. flavum RT 179.Acta Microbiol. Bulg. 18, 17–22 (1986).

    CAS  Google Scholar 

  • Nakamori S., Shiio I.: Microbial production ofl-threonine, production of methionine and lysine auxotrophs derived from α-amino-β-hydroxyvaleric acid-resistant mutants ofBrevibacterium flavum.Agric. Biochem. 36, 1209–1216 (1973).

    Google Scholar 

  • Nakayama K., Kitada S., Sato Z., Kinoshita S.:J. Gen. Appl. Microbiol. 7, 41 (1961).

    CAS  Google Scholar 

  • Otsuka S., Miyajima R., Shiio I.: Comparative study in the mechanism of microbial glutamate formation. III. Effect of biotin.J. Gen. Appl. Microbiol. 3, 295–301 (1965).

    Google Scholar 

  • Ploshakova M., Murgov I., Kinova Z., Aleksiev A., Bataklieva Z.: Selection of threonine-lysine producers ofB. flavum RT 164.Acta Microbiol. Bulg. 18, 23–30 (1986).

    Google Scholar 

  • Robinson D.S.: Oxidation of selected alkanes and related compounds by aPseudomonas strain.Antonie van Leeuwenhoek 30, 303–316 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Roy D.K., Chatterjee S.P.: Production of glutamic acid by anArthrobacter sp. Identification and nutritional requirement in relation to glutamic acid production.Acta Microbiol. Polon. 31, 153 (1983).

    Google Scholar 

  • Shiio F., Otsuka S., Takahashi M.: Effect of biotin on the bacterial fermentation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids.J. Biochem. (Tokyo)51, 56–62 (1962).

    CAS  Google Scholar 

  • Shiio I., Nakamori S.: Microbial production ofl-threonine. I. Production ofE. coli mutants resistant to α-amino-β-hydroxyvaleric acid.Agric. Biol. Chem. 33, 1152–1160 (1969).

    CAS  Google Scholar 

  • Tanaka K., Iwasaki H., Kinoshita S.: Glutamic acid fermentation. V. Biotin andl-glutamic acid accumulation by bacteria.Nippon Nogei Kagaku Kaishi 34, 593–599 (1960a).

    CAS  Google Scholar 

  • Tanaka K., Akita S., Kijura K., Kinoshita S.: Glutamic acid fermentation. VI. The role of biotin in the metabolism ofM. glutamicus.Nippon Nogei Kagaku Kaishi 34, 600–608 (1960b).

    CAS  Google Scholar 

  • Tokoro Y., Oshima K., Tanaka K., Kinoshita S.: Amino acids and nucleic acidsAgric. Biol. Chem. 19, 115 (1969).

    Google Scholar 

  • Tsukada Y., Sugimori T.: Induction of auxotrophic mutants fromCandida sp. and their application to threonine fermentation.Agric. Biol. Chem. 35, 1–7 (1971).

    CAS  Google Scholar 

  • Udaka S., Kinoshita S.: The microbial production of amino acids.J. Gen. Appl. Microbiol. 5, 159–161 (1958).

    Google Scholar 

  • Veldkamp H., Berg Z., Zevenhuizen L.P.T.M.: Glutamic acid production by arthrobacter globiformis.Antonie van Leeuwenhoek J. Microbiol. Serol. 29, 35–51 (1963).

    Article  CAS  Google Scholar 

  • Watanabe H., Tanaka, T., Hirakawa K., Motoki A.: Fermentative production of threonine.US Pat. 3 616 217 (1971).

  • Work E.: Reaction of ninhydrin in acid solution with straight chain amino acids containing two amino groups and its application to the estimation of α,ε-diaminopimelic acid.Biochem. J. 67, 416 (1957).

    PubMed  CAS  Google Scholar 

  • Yamada, Masanari, Tsutsui, Hiroki, Yomoto, Kyosuta: Enhanced production ofl-threonine byProvidencia.Japan Kokai, Tokyo Koho Jp. 61, 260, 891 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, Y.B., Mondal, S. l-threonine production by polyauxotrophic mutants ofArthrobacter globiformis . Folia Microbiol 41, 141–145 (1996). https://doi.org/10.1007/BF02814689

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814689

Keywords

Navigation