Skip to main content
Log in

Methionine production by microorganisms

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Microbial production of methionine is reviewed with 71 references. The review describes different methionine-producing organisms, as well as analog-resistant regulatory mutants, their optimum cultural conditions and yields. The pathways of methionine biosynthesis and their regulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott J.B., Gledhill W.E.: The extracellular accumulation of metabolic products by hydrogen degrading microorganisms.Adv. Appl. Microbiol.14, 249–388 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Adelberg E.A.: Selection of bacterial mutants which exerets antagonists of antimetabolites.J. Bacteriol.76, 326–328 (1958).

    PubMed  CAS  Google Scholar 

  • Avram D., Stan R., Vasu T., Vamanu A., Dan F.: Isolation ofl-methionine enriched mutants from methylotrophic yeastCandida boidinii ICCF 26 in a sulfur deficient medium.Recent Adv. Biotechnol.210, 495–496 (1991).

    Google Scholar 

  • Banik A.K., Majumdar S.K.: Studies on methionine fermentation. Part I. Selection of mutants ofM. glutamicus and optimum condition for methionine production.Indian J. Exp. Biol.12, 363–365 (1974).

    PubMed  CAS  Google Scholar 

  • Banik A.K., Majumdar S.K.: Effects of minerals on the production of methionine byMicrococcus glutamicus.Indian J. Exp. Biol.13, 510–512 (1975).

    PubMed  CAS  Google Scholar 

  • Cafferata R.L., Freundhch M.: Evidence for a methionine-controlled homoserine dehydrogenase inSalmonella typhimurium.J. Bacteriol.97, 193–198 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Changenux J.P.: The feedback control mechanism of biosyntheticl-threonine deminase byl-isoleucine.Cold Spring Harbor Symp. Quant. Biol.26, 313–318 (1961).

    Google Scholar 

  • Chatterjee S.P., White P.J.: Activities and regulation of the enzyme of lysine biosynthesis in a lysine excreting estrain ofBacillus megaterium.J. Gen. Microbiol.128, 1073–1081 (1982).

    CAS  Google Scholar 

  • Cherest H., Elchler F., de Robichon-Szulmajster H.: Genetic and regulatory aspects of methionine biosynthesis inSaccharomyces cerevisiae.J. Bacteriol.97, 328–336 (1969).

    PubMed  CAS  Google Scholar 

  • Clark B.F.C., Marcker K.A.: How proteins start.Sci. Amer.218, 36–42 (1968).

    PubMed  CAS  Google Scholar 

  • Cohn M., Cohn G.M., Monod J.: Compt. Rend.236, 746 (1953); cited from p. 331–332,Microbial Technology (H.J. Peppler, Ed.). Reinhold Publ. Co., New York 1953.

    CAS  Google Scholar 

  • Dulaney E.L., Jones C.A., Dulaney D.:Develop. Ind. Microbiol.5, 242 (1965); cited from p. 330,Microbial Technology (H.J. Pepler, Ed.) Reinhold Publ. Co., New York 1967.

    Google Scholar 

  • Dulaney E.L.: Microbial production of amino acids, p. 308 inMicrobial Technology (H.J. Peppler, Ed.). Reinhold Publ. Co., New York 1967

    Google Scholar 

  • Dunyak S.A., Cook I.M.: Continuous fermentor growth of a methionine overproducing mutant ofCandida utilis.Appl. Microbiol. Biotechnol.21, 182–86 (1985).

    Article  CAS  Google Scholar 

  • Duoros J.D., Raymond R.L.: Amino acids obtained by fermentation.US Pat 3 210 543;Chem. Abstr.64 4229d (1965).

    Google Scholar 

  • Elmayergi H.H., Smith R.E.: Influence of growth ofStreptomyces fradiae on pepsin-HCl digestibility and methionine content of feather meal.Can. J. Microbiol.17, 1067–1072 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Falcoz K.F., Rapenbusch R.V., Cohen G.N.: The methionine-repressible homoserine dehydrogenase and aspartokinase activities ofEscherichia coli K12.Eur. J. Biochem.8, 146–152 (1969).

    Article  Google Scholar 

  • Flavin M., Devalier-Klutecko C., Slaughter C.: Succinic ester and amide of homoserine some spontaneous & enzymatic reactions.Science143, 50 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Flavin M.:Metabolic Sulfur Compounds, pp. 497–503 in D.M. Greenberg (Ed.):Metabolic Pathways, Vol. 7, 3rd ed. Academic Press, New York 1975.

    Google Scholar 

  • Galsworthy S.B., Metzenberg R.L.: Sulfur-containing metabolites secreted by an ethionine-resistant mutant ofNeurospora.Biochemistry4, 1183 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Ghosh B.B., Banerjee A.K.: Hydrocarbon utilization byAeromonas, Arthrobacter, Brevibacterium, Corynebacterium, Micrococcus, Mycobacterium, Nocardia andSerratia sp.Curr. Sci.51, 1072 (1982b).

    Google Scholar 

  • Heiland P.C., Hill F.F.: Accumulation of S-adenosyl-homocysteine and S-aderosyl methionine by an ethionine-resistant mutant of bakers yeast.Process Biochem.28, 171–177 (1993).

    Article  CAS  Google Scholar 

  • Imada Y., Takahashi J., Yamada K., Udhida K., Aida K.:Biotechnol. Bioeng., 45–54 (1967).

  • Ishikawa T., Horikoshi K., Koyama Y., Kimura H.: Manufacture ofl-methionine from N-carbomoyl methionine withBacillus onvibrio species. Nippon Soda Co. Ltd. 1987.

  • Kageyama S., Morinaga T., Kawada N., Inoue K.: Production of methonine. Agency of Industrial Sciences and Technology. Japan Kokai Tokkyo Koho JP. 61 268 189 (1986).

  • Kase H., Nakayama K.:l-Threonine fermentations. IV. Mechanism onl-threonine andl-lysine production by analog resistant mutant ofCorynebacterium glutamicum.Agric. Biol. Chem.38, 993–1000 (1974).

    CAS  Google Scholar 

  • Kase H., Nakayama K.:l-Methionine production by analog resistant derived from threonine producing strain ofCorynebacterium glutamicum.Agric. Biol. Chem.41, 109–116 (1979).

    Google Scholar 

  • Kerr D.S., Flavin M.: The regulation of methionine synthesis and the nature of cystathionine γ-synthase inNeurospora.J. Biol. Chem.245, 1842–1855 (1970).

    PubMed  CAS  Google Scholar 

  • Kitamoto H.K., Nakahara I.: Isolation of anl-methionine-enriched mutant ofKluyveromyces lactis grown on whey permeate.Process Biochem.29, 127–131 (1994).

    Article  CAS  Google Scholar 

  • Kung H.F., Spears C., Greene R.C., Weisebatch H.: Regulation of the terminal reactions in methionine biosynthesis by vitamin B12 and methionine.Arch. Biochem. Biophys.150, 23–31 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Kvasnikov E.I., Burakova D.A., Nesterenko O.A., Dykan S.A.: Accumulation of amino acids by bacteria during growth on media withn-alkanes.Microbiol. Zh.31, 427–431 (1969).

    CAS  Google Scholar 

  • Kyowa Hakko Kogyo Co.: Fermentation of methionine and enzyme synthesis (1982).

  • Lawrence D.A., Smith X.Y.: Regulation of methionine synthesis inSalmonella typhimurium: Mutants resistant to inhibition by analogues of methionine.Genetics58, 473–492 (1969).

    Google Scholar 

  • Lee L.W., Ravel J.M., Shive W.: Multimetabolite control of a biosynthetic pathway by sequential metabolites.J. Biol. Chem.241 5479–5480 (1966).

    PubMed  CAS  Google Scholar 

  • Lim W.J., Tani H., Yang H.C.: Biochemical characterization of anl-methionine enriched mutant of a methylotrophic yeast,Candida boidinii.J. Ferment. Bioeng.69, 271–275 (1990).

    Article  CAS  Google Scholar 

  • Metzenberg R.L., Kappy M.S., Parson J.W.: Irreparable mutations and ethionine resistance inNeurospora.Science145, 1434 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Morinaga Y., Tani Y., Yamada H.:l-methionine production by ethionine resistant mutants of a facultative methylotroph ofPseudomonas FM518.Agric. Biol. Chem.46, 473–480 (1982).

    CAS  Google Scholar 

  • Mueller J.H.:Proc. Soc. Exp. Biol. Med.19, 161 (1962); cited fromBiochemistry of the Amino Acids (A. Meister, Ed.), 2nd ed., Vol. I. Academic Press, New York 1962.

    Google Scholar 

  • Mondal S.: Influence of cystine on methionine function byNocardia polychromogenes andBrevibacterium ammoniagenes.Res. & Ind.38, 101 (1993).

    CAS  Google Scholar 

  • Mondal S., Das Y.B., Chatterjee S.P.: Improvement ofl-methionine production by double auxotrophic mutants ofBrevibacterium heali LT5 and LT18.Res. & Ind.39, 239–241 (1994).

    CAS  Google Scholar 

  • Mondal S., Chatterjee S.P.: Enhancement of methionine production by methionine analogue ethionine resistant mutants ofBrevibacterium heali.Acta Biotechnol.14, 199–204 (1994).

    Article  CAS  Google Scholar 

  • Nakayama K., Tanaka H., Hagino H., Kinoshita S.: Studies on lysine fermentation. V. Concerted feedback inhibition of aspartokinase and the absence of lysine inhibition on aspartic semialdehyde pyruvate condensation inMicrococcus glutamicus.Agric. Biol. Chem.30, 611–616 (1966).

    CAS  Google Scholar 

  • Nakayama K.: Breeding of amino acid overproducing mutants.Prog. Ind. Microbiol.24, 313 (1986).

    Google Scholar 

  • Ozaki H., Shiio I.: Methionine biosynthesis inBrevibacterium flavum. Properties and essential role of O-acetyl homoserine sulfhydrylase.J. Biochem.91, 1163–1171 (1982).

    PubMed  CAS  Google Scholar 

  • Patte J.C., Bros G.L., Cohen G.N.: Regulation by methionine of the synthesis of a third aspartokinase and of a second homoserine dehydrogenase inEscherichia coli K12.Biochem. Biophys. Acta136, 245–257 (1967).

    PubMed  CAS  Google Scholar 

  • Patte J.C., Boy E.: Multivalent repression of aspartic semialdehyde dehydrogenase inEscherichia coli K-12.J. Bacteriol.112, 84–92 (1972).

    PubMed  Google Scholar 

  • Rose W.C.: The nutritive significance of the amino acids.Physiol. Rev.18, 109–136 (1938).

    Google Scholar 

  • Rowbury R.J.: The accumulation of O-succinylhomoserine byEscherichia coli andSalmonella typhimurium.J. Gen. Microbiol.37, 171–180 (1964).

    PubMed  CAS  Google Scholar 

  • Rowbury R.J.: Resistance to norleucine and control of methionine synthesis inEscherichia coli.Nature206, 962 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Rowbury R.J., Woods D.D.: Further studies of the repression of methionine synthesis inEscherichia coli.J. Gen. Microbiol.24, 129–144 (1961).

    PubMed  CAS  Google Scholar 

  • Rowbury R.J., Woods D.D.: Repression by methionine of cystathionase formation inEscherichia coli.J. Gen. Microbiol.35, 145–158 (1964a)

    PubMed  CAS  Google Scholar 

  • Rowbury R.J., Woods D.D.: O-succinylhomoserine as an intermediate in the synthesis of cystathionine byEscherichia coli.J. Gen. Microbiol.36, 341–358 (1964b).

    PubMed  CAS  Google Scholar 

  • Roy S.K., Mishra A.K., Nanda G.: Extracellular production ofl-methionine byBacillus megaterium B71 isolated from soil.Current Sci.53, 1296–1297 (1984).

    CAS  Google Scholar 

  • Roy S.K., Mishra A.K., Nanda G.: Methionine production by microorganisms.Trans. Bose Res. Inst.48, 51–57 (1985).

    Google Scholar 

  • Roy S.K., Biswas S.R., Mishra A.K., Nanda G.: Production and purification of methionine from a multianalogue resistant mutant B6 US 215 ofBacillus megaterium.J. Microbiol. Biotechnol.4, 35–41 (1989).

    CAS  Google Scholar 

  • Sandars S., Yoatt J.: Amino acids in the control of differentiation of sporangia inAllomyces macrogynus.Austral. J. Biol. Sci.36, 435–443 (1983).

    CAS  Google Scholar 

  • Selhub J., Savin M.A., Sakami W., Flavin M.: Synchronization of converging metabolic pathways: Activation of the cystathionine γ-synthase ofNeurospora crassa by methyltetrahydrofolate.Proc. Nat. Acad. Sci. USA68, 312–314 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Stadtman E.R., Le Bras G., De Robichon Szulmajster H.: Feedback inhibition and repression of aspartokinase activity inEscherichia coli andSaccharomyces cerevisiae.J. Biol. Chem.236, 2033–2038 (1961)

    CAS  Google Scholar 

  • Takesu S., Toshio Y., Wada H.:l-Methionine (Sumitomo Chemical Co. Ltd.) U.S. Pat. 3 139 386 (1964). Japan Appl. (1961).

  • Tanabe Seiyaku Co. Ltd.: N-Acetyl-l-methionine production byErwinia. Japan Kokai Tokkyo Koho JP. 5881 892 (1983).

  • Tanaka H., Soda K.: Production ofl-methionine and related amino acids. Methionine. p. 183–187. Kyoto University Uji, Kyoto 1986.

    Google Scholar 

  • Tani Y., Lim W.J., Yang H.C.: Isolation ofl-methionine-enriched mutant of a methylotrophic yeastCandida boidinii No. 2201.J. Ferment. Technol.66, 153–158 (1988).

    Article  CAS  Google Scholar 

  • Tosa T., Mori T., Fuse N., Chibata I.: Methionine production.Biotechnol. Bioeng.9, 603 (1967).

    Article  CAS  Google Scholar 

  • Umbarger H.E.: Regulation of amino acid metabolism.Am. Rev. Biochem.38, 323–349 (1969).

    Article  CAS  Google Scholar 

  • Wada H.:Nippon Nogeikagaku Kaishi48, 277 (In Japanese) (1974).

    Google Scholar 

  • Wandrey C.: Microbial production of amino acids. Proc. 3rd Int. Symp. on the Life Science Ohtsu (Japan), p. 17 (1984).

  • Wijesundra S., Woods D.D.: The catabolism of cystathionine byEscherichia coli.J. Gen. Microbiol.29, 353 (1962).

    Google Scholar 

  • Wyman A., Paulus H.: Purification and properties of homoserine transacetylase fromBacillus polymyxa.J. Biol. Chem.250, 3897–3903 (1975).

    PubMed  CAS  Google Scholar 

  • Yamada H., Takahashi S., Kii Y., Kumagal H.:J. Ferment. Technol.56, 484–490 (1878).

    Google Scholar 

  • Yamada H., Morinaga Y., Tani Y.:l-Methionine overproduction by ethionine resistant mutants of obligate methylotroph,Methylomonas OM 33.Agric. Biol. Chem.46, 47–55 (1982).

    CAS  Google Scholar 

  • Yoshiki T., Jin L.W., Chul Y.H.: Isolation ofl-methionine enriched mutant of a methylotrophic yeastCandida boidinii No. 2201.J. Ferment. Technol.66, 153–158 (1988).

    Article  Google Scholar 

  • Youatt J.: Evidence of methionine biosynthesis inAllomyces macrogymus.Trans. Brit. Mycol. Soc.86, 653–655 (1985).

    Article  Google Scholar 

  • Yugari Y., Gilvarg C.: Coordinated end product inhibition in lysine synthesis inEscherichia coli.Biochim. Biophys. Acta62, 612–614 (1962).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S., Das, Y. & Chatterjee, S. Methionine production by microorganisms. Folia Microbiol 41, 465–472 (1996). https://doi.org/10.1007/BF02814659

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814659

Keywords

Navigation