Theory in Biosciences

, Volume 124, Issue 2, pp 121–143 | Cite as

Homology and ontogeny: pattern and process in comparative developmental biology

Article

Abstract

In this article the interface between development and homology is discussed. Development is here interpreted as a sequence of evolutionarily independent stages. Any approach stressing the importance of specific developmental stages is rejected. A homology definition is favoured which includes similarity and complexity serves as a test for homology. Complexity is seen as the possibility of subdividing a character into evolutionarily independent corresponding substructures. Topology as a test for homology is critically discussed because corresponding positions are not necessarily indicative of homology. Complexity can be used twofold for homology assessments of development: either stages or processes of development are homologised. These two approaches must not be conflated. This distinction leads to the conclusion that there is no ontogenetic homology “criterion”.

Keywords

Evolution Recapitulation Ontogenetic criterion Phylotypic stage Zootype 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alwes, F., Scholtz, G., 2004. Cleavage and gastrulation of the euphausiaceanMeganyctiphanes norvegica (Crustacea, Malacostraca). Zoomorphology 123, 125–137.CrossRefGoogle Scholar
  2. Angelini, D.R., Kaufman, T.C., 2005. Insect appendages and comparative ontogenetics. Dev. Biol. (in press).Google Scholar
  3. Ax, P., 1988. Systematik in der Biologie. Gustav Fischer, Stuttgart.Google Scholar
  4. Bang, R., DeSalle, R., Wheeler, W., 2000. Transformationalism, taxism, and developmental biology in systematics. Syst. Biol. 49, 19–27.PubMedCrossRefGoogle Scholar
  5. Bock, W.J., 1989. The homology concept: its philosophical foundation and practical methodology. Zool. Beitr. (NF) 32, 327–353.Google Scholar
  6. Bolker, J.A., Raff, R.A., 1996. Developmental genetics and traditional homology. BioEssays 18, 489–494.PubMedCrossRefGoogle Scholar
  7. Boyan, G.S., Williams, J.L.D., 1995. Lineage analysis as an analytical tool in the insect nervous system: bringing order to interneurons. In: Breidbach, O., Kutsch, W. (Eds.), The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Birkhäuser, Basel, pp. 273–301.Google Scholar
  8. Brigandt, I., 2002. Homology and the origin of causes. Biol. Phil. 17, 389–407.CrossRefGoogle Scholar
  9. Brigandt, I., 2003. Homology in comparative, molecular, and evolutionary developmental biology: the radiation of a concept. J. Exp. Zool. (Mol. Dev. Evol.) 299B, 9–17.CrossRefGoogle Scholar
  10. Brower, A.V.Z., Schawaroch, V., 1996. Three steps of homology assessment. Cladistics 12, 265–272.Google Scholar
  11. Conklin, E.G., 1905. Organization and cell-lineage of the ascidian egg. Proc. Acad. Natl. Sci. Philadelphia 13, 1–119.Google Scholar
  12. Davis, G.K., D’Alessio, J.A., Patel, N.H., 2005. Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy. Dev. Biol. 285, 169–184.PubMedCrossRefGoogle Scholar
  13. de Beer, G.R., 1971. Homology, an Unsolved Problem. Oxford University Press, London.Google Scholar
  14. dePinna, M.C.C., 1991. Concepts and tests of homology in the cladistic paradigm. Cladistics 7, 367–394.CrossRefGoogle Scholar
  15. Dickinson, W.J., 1995. Molecules and morphology: where is the homology? TIG 11, 119–121.PubMedGoogle Scholar
  16. Doe, C.Q., 1992. Molecular markers for identified neuroblasts and ganglion mother cells in theDrosophila central nervous system. Development 116, 855–863.PubMedGoogle Scholar
  17. Dohle, W., 1976. Zur Frage des Nachweises von Homologien durch die komplexen Zell- und Teilungsmuster in der embryonalen Entwicklung höherer Krebse (Crustacea, Malacostraca, Peracarida). Sitzber. Ges. Naturf. Freunde Berlin (N.F.) 16, 125–144.Google Scholar
  18. Dohle, W., 1989a. Zur Frage der Homologie ontogenetischer Muster. Zool. Beitr. (N.F.) 32, 355–389.Google Scholar
  19. Dohle, W., 1989b. Differences in cell pattern formation in early embryology and their bearing on evolutionary changes in morphology. Geobios mém. spec. 12, 145–155.CrossRefGoogle Scholar
  20. Dohle, W., 1999. The ancestral cleavage pattern of the clitellates and its phylogenetic deviations. Hydrobiologia 402, 267–283.CrossRefGoogle Scholar
  21. Dohle, W., 2004. Die Verwandtschaftsbeziehungen der Großgruppen der Deuterostomier: Alternative Hypothesen und ihre Begründung. Sitzber. Ges. Naturf. Freunde Berlin (N.F.) 43, 123–162.Google Scholar
  22. Dohle, W., Gerberding, M., Hejnol, A., Scholtz, G., 2004. Cell lineage, segment differentiation and gene expression in crustaceans. In: Scholtz, G. (Ed.), Evolutionary Developmental Biology of Crustacea. Balkema, Lisse, pp. 95–133.Google Scholar
  23. Donoghue, M.J., Sanderson, M.J., 1994. Complexity and homology in plants. In: Hall, B.K. (Ed.), Homology, the Hierarchical Basis of Comparative Biology. Academic Press, San Diego, pp. 394–421.Google Scholar
  24. Duboule, D., 1994. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate bauplan and the evolution of morphologies through heterochrony. Development (suppl.), 135–142.Google Scholar
  25. Edgecombe, G.D., Richter, S., Wilson, G.D.F., 2003. The mandibular gnathal edges: homologous structures throughout Mandibulata? Afr. Invertebr. 44, 115–135.Google Scholar
  26. Fechter, H., 1971. Manteltiere, Schädellose, Rundmäuler. Walter de Gruyter & Co., Berlin.Google Scholar
  27. Félix, M.-A., De Ley, P., Sommer, R.J., Frisse, L., Nadler, S.A., Thomas, W.K., Vanfleteren, J., Sternberg, P.W., 2000. Evolution of vulva development in the Cephalobina (Nematoda). Dev. Biol. 221, 68–86.PubMedCrossRefGoogle Scholar
  28. Franz, V., 1927. Ontogenie und Phylogenie. Das sogenannte biogenetische Grundgesetz und die biometabolischen Modi. Abh. Theor. organ. Entw. 3, 1–51.Google Scholar
  29. Galis, F., Metz, J.A.J., 2001. Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J. Exp. Zool. (Mol. Dev. Evol.) 291, 195–204.CrossRefGoogle Scholar
  30. Gegenbaur, C., 1878. Grundriss der vergleichenden Anatomie. Wilhelm Engelmann, Leipzig.Google Scholar
  31. Gehring, W.J., 2004. Historical perspective on the development and evolution of eyes and photoreceptors. Int. J. Dev. Biol. 48, 707–717.PubMedCrossRefGoogle Scholar
  32. Gerberding, M., Browne, W.E., Patel, N.H., 2002. Cell lineage analysis of the amphipodParhyale hawaiensis reveals and early restriction of cell fates. Development 129, 5789–5801.PubMedCrossRefGoogle Scholar
  33. Ghiselin, M.T., 1969. The distinction between similarity and homology. Syst. Zool. 18, 148–149.CrossRefGoogle Scholar
  34. Gilbert, S.F., Bolker, J.A., 2001. Homologies of process and modular elements of embryonic construction. J. Exp. Zool. (Mol. Dev. Evol.) 291, 1–12.CrossRefGoogle Scholar
  35. Grant, T., Kluge, A.G., 2004. Transformation series as an ideographic character concept. Cladistics 20, 23–31.CrossRefGoogle Scholar
  36. Greenspan, R.J., 2001. The flexible genome. Nature Rev. Gen. 2, 383–387.CrossRefGoogle Scholar
  37. Guralnick, R., 2002. A recapitulation of the rise and fall of the cell lineage research program: the evolutionary-developmental relationship to cleavage to homology, body plants and life history. J. Hist. Biol. 35, 537–567.CrossRefGoogle Scholar
  38. Haeckel, E., 1866. Generelle Morphologie der Organismen. Georg Reimer, Berlin.Google Scholar
  39. Hall, B.K. (Ed.), 1994. Homology—The Hierarchical Basis of Comparative Biology. Academic Press, San Diego.Google Scholar
  40. Hall, B.K., 1995. Homology and embryonic development. Evolution. Biol. 28, 1–37.Google Scholar
  41. Hall, B.K., 1999. Evolutionary Developmental Biology, second ed. Kluwer Academic Publishers, Dordrecht.Google Scholar
  42. Haszprunar, G., 1992. The types of homology and their significance for evolutionary biology and phylogenetics. J. Evol. Biol. 5, 13–24.CrossRefGoogle Scholar
  43. Hejnol, A., Scholtz, G., 2004. Clonal analysis ofDistal-less andengrailed expression patterns during early morphogenesis of uniramous and biramous crustacean limbs. Dev. Genes Evol. 214, 473–485.PubMedGoogle Scholar
  44. Hennig, W., 1966. Phylogenetic Systematics. University of Illinois Press, Urbana.Google Scholar
  45. Hennig, W., 1982. Phylogenetische Systematik. Paul Parey, Berlin.Google Scholar
  46. Hertzler, P.L., Clark Jr., W.H., 1992. Cleavage and gastrulation in the shrimpSicyonia ingentis. Development 116, 127–140.PubMedGoogle Scholar
  47. Hughes, C.L., Kaufman, T.C., 2002.Hox genes and the evolution of the arthropod body plan. Evol. Dev. 4, 459–499.PubMedCrossRefGoogle Scholar
  48. Janies, D., DeSalle, R., 1999. Development, evolution, and corroboration. Anat. Rec. 257, 6–14.PubMedCrossRefGoogle Scholar
  49. Jenner, R.A., Scholtz, G., 2005. Playing another round of metazoan phylogenetics: Historical epistemology, sensitivity analysis, and the position of Arthropoda within the Metazoa on the basis of morphology. In: Koenemann, S., Jenner, R.A. (Eds.), Crustacea and Arthropod Relationships. Taylor & Francis, Boca Raton, pp. 355–385.Google Scholar
  50. Jockusch, E.L., Ober, K.A., 2004. Hypothesis testing in evolutionary developmental biology: a case study from insect wings. J. Hered. 95, 382–396.PubMedCrossRefGoogle Scholar
  51. Jockusch, E.L., Nulsen, C., Newfeld, S.J., Nagy, L.M., 2000. Leg development in flies versus grasshoppers: differences indpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127, 1617–1626.PubMedGoogle Scholar
  52. Katz, P.S., Tazaki, K., 1992. Comparative and evolutionary aspects of the crustacean stomatogastric system. In: Harris-Warrick, R.M., Marder, E., Selverston, A.I., Moulins, M. (Eds.), Dynamic Biological Networks: The Stomatogastric Nervous System. MIT Press, Cambridge, MA, pp. 221–261.Google Scholar
  53. Kluge, A.G., 2003. The repugnant and the mature in phylogenetic inference: atemporal similarity and historical identity. Cladistics 19, 356–368.CrossRefGoogle Scholar
  54. Kuo, D.-H., Shankland, M., 2003. A distinct pattern mechanism of O and P cell fates in the development of the rostral segments of the leechHelobdella robusta: implications for the evolutionary dissociation of developmental pathway and morphological outcome. Development 131, 105–114.PubMedCrossRefGoogle Scholar
  55. Larimer, J.L., Pease, C.M., 1990. Unexpected divergence among identified interneurons in different abdominal segments of the crayfishProcambarus clarkii. J. Exp. Zool. 253, 20–29.PubMedCrossRefGoogle Scholar
  56. Laubichler, M.D., Maienschein, J., 2003. Ontogeny, anatomy, and the problem of homology: Carl Gegenbaur and the American tradition of cell lineage studies. Theory Biosci. 122, 194–203.Google Scholar
  57. Laugsch, M., Schierenberg, E., 2004. Differences in maternal supply and early development of closely related nematode species. Int. J. Dev. Biol. 48, 655–662.PubMedCrossRefGoogle Scholar
  58. Lee, P.N., Callaerts, P., de Couet, H.G., Martindale, M.Q., 2003. CephalopodHox genes and the origin of morphological novelties. Nature 424, 1061–1065.PubMedCrossRefGoogle Scholar
  59. Liu, P.Z., Kaufman, T.C., 2005.Even-skipped is not a pair-rule gene but has segmental and gap-like functions inOncopeltus fasciatus, an intermediate germband insect. Development 132, 2081–2092.PubMedCrossRefGoogle Scholar
  60. Løvtrup, S., 1978. On von Baerian and Haeckelian recapitulation. Syst. Zool. 27, 348–352.CrossRefGoogle Scholar
  61. Mayr, E., 1969. Principles of Systematic Zoology. McGraw-Hill, New York.Google Scholar
  62. Mickoleit, G., 2004. Phylogenetische Systematik der Wirbeltiere. Verlag Dr. Friedrich Pfeil, München.Google Scholar
  63. Mindell, D.P., Meyer, A., 2001. Homology evolving. Tree 16, 434–440.Google Scholar
  64. Minelli, A., 1998. Molecules, developmental modules, and phenotypes: a combinatorial approach to homology. Mol. Phylogen. Evol. 9, 340–347.CrossRefGoogle Scholar
  65. Minelli, A., 2003. The Development of Animal Form. Cambridge University Press, Cambridge.Google Scholar
  66. Mittmann, B., 2002. Early neurogenesis in the horseshoe crabLimulus polyphemus and its implication for arthropod phylogeny. Biol. Bull. 203, 221–222.PubMedCrossRefGoogle Scholar
  67. Mittmann, B., Scholtz, G., 2003. Development of the nervous system in the “head” ofLimulus polyphemus (Chelicerata, Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev. Genes Evol. 213, 9–17.PubMedGoogle Scholar
  68. Mocek, R., 1998. Die werdende Form. Basilisken-Presse, Marburg.Google Scholar
  69. Müller, F., 1864. Für Darwin. Engelmann, Leipzig.Google Scholar
  70. Müller, G.B., Wagner, G.P., 1996. Homology,Hox genes, and developmental biology. Am. Zool. 36, 4–13.Google Scholar
  71. Nielsen, C., 2001. Animal Evolution, second ed. Oxford University Press, Oxford.Google Scholar
  72. Nielsen, C., Martinez, P., 2003. Patterns of gene expression: homology or homocrazy. Dev. Gen. Evol. 213, 149–154.Google Scholar
  73. Oda-Ishii, I., Bertrand, V., Matsuo, I., Lemaire, P., Saiga, H., 2005. Making very similar embryos with divergent genomes: conservation of regulatory mechanisms ofOtx between the ascidiansHalocynthis roretzi andCiona intestinalis. Development 132, 1663–1674.PubMedCrossRefGoogle Scholar
  74. Osche, G., 1973. Das Homologisieren als eine grundlegende Methode der Phylogenetik. Aufs. Red. Senckenberg. Naturf. Ges. 24, 155–165.Google Scholar
  75. Osche, G., 1982. Rekapitulationsentwicklung und ihre Bedeutung für die Phylogenetik—wann gilt die “Biogenetische Grundregel”? Verh. naturwiss. Ver. Hamburg (N.F.) 25, 5–31.Google Scholar
  76. Panchen, A.L., 1992. Classification, Evolution, and the Nature of Biology. Cambridge University Press, Cambridge.Google Scholar
  77. Panchen, A.L., 1994. Richard Owen and the concept of homology. In: Hall, B.K. (Ed.), Homology—The Hierarchical Basis of Comparative Biology. Academic Press, San Diego, pp. 21–62.Google Scholar
  78. Patel, N.H., Ball, E.E., Goodman, C.S., 1992. Changing role of even-skipped during the evolution of insect pattern formation. Nature 357, 339–342.PubMedCrossRefGoogle Scholar
  79. Patel, N.H., Condron, B.G., Zinn, K., 1994. Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature 367, 429–434.PubMedCrossRefGoogle Scholar
  80. Patterson, C., 1982. Morphological characters and homology. In: Joysey, K.A., Friday, A.E. (Eds.), Problems of Phylogenetic Reconstruction. Academic Press, London, pp. 21–74.Google Scholar
  81. Paulus, H., 1996. Euarthropoda. In: Westheide, W., Rieger, R. (Eds.), Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere. Gustav Fischer, Stuttgart, pp. 435–444.Google Scholar
  82. Paulus, H.F., 2000. Phylogeny of Myriapoda—Crustacea—Insecta: a new attempt using photoreceptor structure. J. Zool. Syst. Evol. Res. 38, 189–208.CrossRefGoogle Scholar
  83. Pearson, K.G., Boyan, G.S., Bastiani, M., Goodman, C.S., 1985. Heterogeneous properties of segmentally homologous interneurons in the ventral nerve cord of locusts. J. Comp. Neurol. 233, 133–145.PubMedCrossRefGoogle Scholar
  84. Popadic, A., Panganiban, G., Rusch, D., Shear, W.A., Kaufman, T.C., 1998. Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures. Dev. Genes Evol. 208, 142–150.PubMedCrossRefGoogle Scholar
  85. Raff, R.A., 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form. University of Chicago Press, Chicago.Google Scholar
  86. Raff, R.A., 1999. Larval homologies and radical evolutionary changes in early development. In: Homology (Novartis foundation Symposium 222). Wiley, Chichester, pp. 110–121.Google Scholar
  87. Remane, A., 1952. Die Grundlagen des natürlichen Systems der vergleichenden Anatomie und der Phylogenetik. Geest und Portig, Leipzig.Google Scholar
  88. Remane, A., 1960. Die Beziehungen zwischen Phylogenie und Ontogenie. Zool. Anz. 164, 306–337.Google Scholar
  89. Richardson, M.K., 1999. Vertebrate evolution: the developmental origins of adult variation. BioEssays 21, 604–613.PubMedCrossRefGoogle Scholar
  90. Richardson, M.K., Hanken, J., Gooneratne, M.L., Pieau, C., Raynaud, A., Selwood, L., Wright, G.M., 1997. There is no highly conserved embryonic stage in the vertebrates, implications for current theories of evolution and development. Anat. Embryol. 196, 91–106.PubMedCrossRefGoogle Scholar
  91. Richardson, M.K., Allen, S.P., Wright, G.M., Raynaud, A., Hanken, J., 1998. Somite number and vertebrate evolution. Development 125, 151–160.PubMedGoogle Scholar
  92. Richter, S., 2002. The Tetraconata concept: hexapod-crustacean relationships and the phylogeny of Crustacea. Org. Divers. Evol. 2, 217–237.CrossRefGoogle Scholar
  93. Riedl, R., 1975. Die Ordnung des Lebendigen. Parey, Hamburg.Google Scholar
  94. Riedl, R., 2000. Strukturen der Komplexität. Springer, Berlin.Google Scholar
  95. Rieppel, O.C., 1988. Fundamentals of Comparative Biology. Birkhäuser, Basel.Google Scholar
  96. Rieppel, O., Kearney, M., 2002. Similarity. Biol. J. Linn. Soc. 75, 59–82.CrossRefGoogle Scholar
  97. Roth, V.L., 1984. On homology. Biol. J. Linn. Soc. 22, 13–29.CrossRefGoogle Scholar
  98. Roth, V.L., 1991. Homology and hierarchies: problems solved and unresolved. J. Evol. Biol. 4, 167–194.CrossRefGoogle Scholar
  99. Rudel, D., Sommer, R.J., 2003. The evolution of developmental mechanisms. Dev. Biol. 264, 15–37.PubMedCrossRefGoogle Scholar
  100. Salthe, S.N., 1993. Development and Evolution—Complexity and Change in Biology. MIT Press, Cambridge.Google Scholar
  101. Sander, K., 1983. The evolution of patterning mechanisms: gleanings from insect embryogenesis and spermatogenesis. In: Goodwin, B.C., Holder, N., Wylie, C.G. (Eds.), Development and Evolution. Cambridge University Press, Cambridge, pp. 137–158.Google Scholar
  102. Schmid, A., Chiba, A., Doe, C.Q., 1999. Clonal analysis ofDrosophila embryonic neuroblasts: neural cell types, axon projections and muscular targets. Development 126, 4653–4689.PubMedGoogle Scholar
  103. Schmitt, M., 1995. The homology concept—still alive. In: Breidbach, O., Kutsch, W. (Eds.), The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach. Birkhäuser, Basel, pp. 425–438.Google Scholar
  104. Scholtz, G., 1997. Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda. In: Fortey, R.A., Thomas, R.H. (Eds.), Arthropod Relationships. Chapman & Hall, London, pp. 317–332.Google Scholar
  105. Scholtz, G., 2000. Evolution of the nauplius stage in malacostracan crustaceans J. Zool. Syst. Evol. Res. 38, 175–187.CrossRefGoogle Scholar
  106. Scholtz, G., 2002. The Articulata hypothesis—or what is a segment? Org. Divers. Evol. 2, 197–215.CrossRefGoogle Scholar
  107. Scholtz, G., 2004. Baupläne versus ground patterns, phyla versus monophyla: aspects of patterns and processes in evolutionary developmental biology. In: Scholtz, G. (Ed.), Evolutionary Developmental Biology of Crustacea. Balkema, Lisse, pp. 3–16.Google Scholar
  108. Scholtz, G., Dohle, W., 1996. Cell lineage and cell fate in crustacean embryos—a comparative approach. Int. J. Dev. Biol. 40, 211–220.PubMedGoogle Scholar
  109. Scholtz, G., Wolff, G., 2002. Cleavage, gastrulation, and germ disc formation of the amphipodOrchestia cavimana (Crustacea, Malacostraca, Peracarida). Contrib. Zool. 71, 9–28.Google Scholar
  110. Scholtz, G., Mittmann, B., Gerberding, M., 1998. The pattern ofdistal-less expression in the mouthparts of crustaceans, myriapods and insect: new evidence for a gnathobasic mandible and the common origin of Mandibulata. Int. J. Dev. Biol. 42, 801–810.PubMedGoogle Scholar
  111. Seidel, F., 1960. Körpergrundgestalt und Keimstruktur: eine Erörterung über die Grundlagen der vergleichenden und experimentellen Embryologie und deren Gültigkeit bei phylogenetischen Überlegungen. Zool. Anz. 164, 245–305.Google Scholar
  112. Seo, H.-C., Edvardsen, R.B., Maeland, A.D., Bjordal, M., Jensen, M.F., Hansen, A., Flaat, M., Weissenbach, J., Lehrach, H., Wincker, P., Reinhard, R. Chourrout, D., 2004.Hox cluster disintegration with persistent anteroposterior order of expression inOikopleura dioica. Nature 431, 67–71.PubMedCrossRefGoogle Scholar
  113. Sewertzoff, A.N., 1931. Morphologische Gesetzmäßigkeiten der Evolution. Fischer, Jena.Google Scholar
  114. Siewing, R., 1979. Homology of cleavage types? Fortschr. Zool. Syst. Evolutionsforch. 1, 7–18.Google Scholar
  115. Simpson, P., 2002. Evolution of development in closely related species of flies and worms. Nat. Rev. Gen. 3, 907–917.CrossRefGoogle Scholar
  116. Simpson, P., Woehl, R., Usui, K., 1999. The development and evolution of bristle patterns in Diptera. Development 125, 1349–1364.Google Scholar
  117. Slack, J.M.W., Holland, P.W.H., Graham, C.F., 1993. The zootype and the phylotypic stage. Nature 361, 490–492.PubMedCrossRefGoogle Scholar
  118. Spemann, H., 1915. Zur Geschichte und Kritik des Begriffs der Homologie. In: Hinneberg, P. (Ed.), Die Kultur der Gegenwart; Allgemeine Biologie. Teubner, Leipzig, pp. 63–86.Google Scholar
  119. Stark, D., 1979. Vergleichende Anatomie der Wirbeltiere, Band 2: Das Skeletsystem. Springer, Berlin.Google Scholar
  120. Stollewerk, A., Weller, M., Tautz, D., 2001. Neurogenesis in the spiderCupiennius salei. Development 128, 2673–2688.PubMedGoogle Scholar
  121. Strathmann, R.R., 1988. Larvae, phylogeny, and von Baer’s law. In: Paul, C.R.C., Smith, A.B. (Eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford, pp. 53–68.Google Scholar
  122. Striedter, G.F., Northcutt, R.G., 1991. Biological hierarchies and the concept of homology. Brain Behav. Evol. 38, 177–189.PubMedGoogle Scholar
  123. Sudhaus, W., 1980. Problembereiche der Homologienforschung., Verh. Dtsch. Zool. Ges. 73, 177–187.Google Scholar
  124. Sudhaus, W., Rehfeld, K., 1992. Einführung in die Phylogenetik und Systematik. Gustav Fischer, Stuttgart.Google Scholar
  125. Tautz, D., 1992. Redundancies, development and the flow of information. BioEssays. 14, 263–266.PubMedCrossRefGoogle Scholar
  126. van Valen, L.M., 1982. Homology and causes. J. Morphol. 173, 305–312.PubMedCrossRefGoogle Scholar
  127. von Baer, K.E., 1828. Ueber Entwickelungsgeschichte der Thiere. Bornträger, Königsberg.Google Scholar
  128. von Baer, K.E., 1873. Entwickelt sich die Larve der einfachen Ascidien in der ersten Zeit nach dem Typus der Wirbelthiere? Mém. Acad. Imp. Sci. St. Pétersbourg 19, 1–35.Google Scholar
  129. Wägele, J.-W., 2005. Foundations of Phylogenetic Systematics. Verlag Dr. Friedrich Pfeil, München.Google Scholar
  130. Wagner, G.P., 1989. The biological homology concept. Ann. Rev. Ecol. Syst. 20, 51–69.CrossRefGoogle Scholar
  131. Wagner, G.P., Misof, B. Y., 1993. How can a character be developmentally constrained despite variation in developmental pathways? J. Evol. Biol. 6, 449–455.CrossRefGoogle Scholar
  132. Whitington, P.M., 2004. The development of the crustacean nervous system. In: Scholtz, G. (Ed.), Evolutionary Developmental Biology of Crustacea. Balkema, Lisse, pp. 135–167.Google Scholar
  133. Wilson, E.B., 1894. The embryological criterion of homology. In: Biological Lectures Delivered at the Marine Biological Laboratory of Wood’s Hole. Ginn & Co., Boston, pp. 101–124.Google Scholar
  134. Wray, G.A., 1999. Evolutionary dissociations between homologous genes and homologous structures. In: Homology (Novartis foundation Symposium 222). Wiley, Chichester, pp. 189–203.Google Scholar
  135. Wray, G.A., Abouheif, E., 1998. When is homology not homology? Curr. Opin. Gen. Dev. 8, 675–680.Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinInstitut für Biologie/Vergleichende ZoologieBerlinGermany

Personalised recommendations