Skip to main content
Log in

Streptomycetes producing daunomycin and related compounds: Do we know enough about them after 25 years?

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

The growing need of highly potent anticancer agents has stimulated the investigation of streptomycetes producing daunomycin-type anthracyclines. This review compares the features of production strains and their mutants and emphasizes the necessity of application of biochemical and biophysical analytical methods for better understanding these microorganisms and, above all, their further improving and practical usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DM:

daunomycin

AM:

adriamycin

References

  • Acton E.M.: Anthracycline mechanisms in analogue selection.Drugs Exp. Clin. Res.11, 1–8 (1985).

    PubMed  CAS  Google Scholar 

  • Arcamone F.: Antitumor anthracyclines: Recent developments.Med. Res. Rev.4, 153–188 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Arcamone F., Cassinelli G., DiMarco A., Gaetani M.: New antibiotic adriamycin and its salts.Austral. Pat. 418 270 (1968).

    Google Scholar 

  • Arcamone F., Cassinelli G., Fantini G., Grein A., Orezzi P., Pol C., Spalla C.: Adriamycin, 14-hydroxydaunomycin, a new antitumor antibiotic fromS. peucetius var.caesius.Biotechnol. Bioeng.11, 1101–1110 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Arcamone F., Cassinelli G., Penco S., Tognoli L.: Dihydrodaunomycin antibiotic and derivatives thereof.US Pat. 3, 686 163 (1972).

    Google Scholar 

  • Aubel-Sadron G., Londos-Gagliardi D.: Daunorubicin and doxorubicin, anthracycline antibiotics, a physicochemical and biological review.Biochimie66, 333–352 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Averbuch S.D., Clawson R.E., Bachur N.R., Felsted R.L.: Cellular pharmacology and antitumor activity of N-(p-azidobenzoyl)-daunorubicin, a photoactive anthracycline analogue.Cancer Chemother. Pharmacol.16, 211–217 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Baburdi N., Dani B., Tamaro M., Monti-Bragadin C., Zunino F.: Mutagenic and cytotoxic activity of doxorubicin and daunorubicin derivatives on prokaryotic and eukaryotic cells.Brit. J. Cancer50, 91–96 (1984).

    Google Scholar 

  • Barcelo F., Barcelo I., Gavilanes F., Ferragut J.A., Yanovich S., Gonzales-Ros J.M.: Interaction of anthracyclines with nucleotides and related compounds studied by spectroscopy.Biochim. Biophys. Acta384, 172–181 (1986).

    Google Scholar 

  • Blumauerová M., Matejů J., Stajner K., Vaněk Z.: Studies on the production of daunomycinone-derived glycosides and related metabolites inStreptomyces coeruleorubidus andStreptomyces peucetius.Folia Microbiol.22, 275–285 (1977).

    Google Scholar 

  • Blumauerová M., Pokorný V., Šťastná J., Hošťálek Z., Vaněk Z.: Developmental mutants ofStreptomyces coeruleorubidus, a producer of anthracyclines. Isolation and preliminary characterization.Folia Microbiol.23, 177–182 (1978a).

    Google Scholar 

  • Blumauerová M., Pokorný V., Šťastná J., Hošťálek Z., Vaněk Z.: Improved yields of daunomycinone glycosides in developmental mutants ofStreptomyces coeruleorubidus.Folia Microbiol.23, 249–254 (1978b).

    Google Scholar 

  • Blumauerová M., Stajner K., Pokorny V., Hošťálek Z., Vaněk Z.: Mutants ofStreptomyces coeruleorubidus impaired in the biosynthesis of daunomycinone glycosides and related antibiotics.Folia Microbiol.23, 255–260 (1978c).

    Google Scholar 

  • Blumauerová M., Královcová E., Hošťálek Z., Vaněk Z.: Intra- and interspecific cosynthetic activity of mutants ofStreptomyces coeruleorubidus andStreptomyces galilaeus impaired in the biosynthesis of anthracyclines.Folia Microbiol.24, 128–135 (1979a).

    Article  Google Scholar 

  • Blumauerová M., Královcová E., Matějů J., Hošťálek Z., Vaněk Z.: Genetic approach to the biosynthesis of anthracyclines, pp. 90–96 inGenetics of Industrial Microorganisms (O.K. Sebek and A.I. Laskin, Eds.). American Society for Microbiology, Washington (DC) 1979b.

    Google Scholar 

  • Blumauerová M., Královcová E., Matějů J., Jizba J., Vaněk Z.: Biotransformations of anthracyclinones inStreptomyces coeruleorubidus andStreptomyces galilaeus.Folia Microbiol.24, 117–127 (1979c).

    Google Scholar 

  • Blumauerová M., Jizba J., Beran M., Rylko V., Vaněk Z.: A new class of adriamycin-producing mutants inStreptomyces peucetius, p. 213 inBiological, Biochemical and Biomedical Aspects of Actinomycetes (G. Szabó, S. Biró, M. Goodfellow, Eds.). Akadémiai Kiadó, Budapest 1986.

    Google Scholar 

  • Bonadonna G., Monfardini S., DeLena M., Fossati-Bellani F., Beretta G.: Phase I and preliminary phase II evaluation of adriamycin (NSC 123127).Cancer Res.30, 2572–2582 (1970).

    PubMed  CAS  Google Scholar 

  • Brockmann H., Bauer K.: Rhodomycin, ein rotes Antibioticum aus Actinomyceten.Naturwiss.37, 492–493 (1950).

    Article  CAS  Google Scholar 

  • Casazza A.M.: Experimental studies on new anthracyclines, pp. 439–452 inAdriamycin, Its Expanding Role in Cancer Treatment (M. Ogawa, F.M. Muggia, M. Rozencweig, Eds.). Excerpta Medica, Amsterdam 1984.

    Google Scholar 

  • Čáslavská J., Blumauerová M.: Ultrastructure ofSteptomyces coeruleorubidus during biosynthesis of antracycline antibiotics.The 11th All-Union Congress on Electron Microscopy, Tallin (USSR) 1979.

  • Cassinelli G., Grein A., Masi P., Suararto A., Bernardi L., Arcamone F., DiMarco A., Casazza A.M., Pratesi G., Sorano C.: Preparation and biological evaluation of 4-O-demethyl daunorubicin (carminomycin I) and its 13-dihydro derivative.J. Antibiot.31, 178–184 (1978).

    PubMed  CAS  Google Scholar 

  • Cassinelli G., Rivola G., Ruggieri D., Arcamone F., Grein A., Merli S., Spalla G., Casazza A.M., DiMarco A., Pratesi G.: New anthracycline glycosides: 4-O-demethyl-11-deoxydoxorubicin and analogues fromStreptomyces peucetius var.aureus.J. Antibiot.35, 176–183 (1982).

    PubMed  CAS  Google Scholar 

  • Dekleva M.L., Titus J.A., Strohl W.R.: Nutrient effects on anthracycline production byStreptomyces peucetius in a defined medium.Can. J. Microbiol.31, 287–294 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Diener E., Diner U.E., Sinha A., Xie S., Vergidis R.: Specific immunosuppression by immunotoxins containing daunomycin.Science231, 148–150 (1986).

    Article  PubMed  CAS  Google Scholar 

  • DiMarco A., Gaetani M., Dorigotti L., Soldati M., Bellini O.: Daunomycin: A new antibiotic with antitumor activity.Tumori49, 203–217 (1963).

    PubMed  CAS  Google Scholar 

  • DiMarco A., Gaetani M., Orezzi P., Scarpinato B.M., Silvestrini R., Soldati M., Dasdia T., Valentini L.: Daunomycin, a new antibiotic of the rhodomycin group.Nature201, 706–707 (1964).

    Article  PubMed  CAS  Google Scholar 

  • DiMarco A., Arcamone F.: DNA complexing antibiotics: Daunomycin, adriamycin and their derivatives.Arzneim. Forsch. (Drug Res.)25, 368–375 (1975).

    CAS  Google Scholar 

  • DiMarco A., Canevazzi G., Grein A., Orezzi P., Gaetani M.: Process for preparation of antibiotics F.I. 1762 derivatives.US Pat. 4 012 284 (1977).

    Google Scholar 

  • Dubost M., Ganter P., Maral R., Ninet L., Pinnert S., Preud’homme J., Werner G.H.: Un nouvel antibiotique à proprietés cytostatiques: La rubidomycin.C.R. Acad. Sci.257, 1813–1815 (1963).

    CAS  Google Scholar 

  • Eckardt K., Tresselt D., Schumann G., Ihn W., Wagner C.: Isolation and chemical structure of aklanonic acid, an early intermediate in the biosynthesis of anthracyclinones.J. Antibiot.38, 1034–1039 (1985a).

    PubMed  CAS  Google Scholar 

  • Eckardt K., Schumann G., Gräfe U., Ihn W., Wagner C., Fleck W.F., Thrum H.: Preparation of labeled aklanonic acid and its bioconversion to anthracyclinones by mutants ofStreptomyces griseus.J. Antibiot.38, 1096–1097 (1985b)

    PubMed  CAS  Google Scholar 

  • Eckardt K., Wagner C.: Biosynthesis of anthracyclinones.J. Basic Microbiol.28, 137–144 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Eckle E., Kiefer E., Lauser G., Stezowski J.J.: Molecular level studies with antracyclines.Drugs Exp. Clin. Res.11, 207–217 (1985).

    PubMed  CAS  Google Scholar 

  • Ehrke M.J., Mihich E.: Effects of anticancer agents on immune responses.Trends Pharmacol. Sci.6, 412–417 (1985).

    Article  CAS  Google Scholar 

  • Eritt I., Gräfe U., Fleck W.F.: A screening method for autoregulators of anthracycline-producing streptomycetes.Z. Allg. Mikrobiol.22, 91–96 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Eritt I., Gräfe U., Fleck W.F.: Inducers of both cytodifferentiation and anthracycline biosynthesis ofStreptomyces griseus and their occurrence in actinomycetes and other microorganisms.Z. Allg. Mikrobiol.24, 3–12 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Fedorova G.V., Brazhnikova M.G., Mezentsev A.S., Kshapinsky I.: Studies on carbohydrate composition of rubomycin B.Antibiotiki15, 403–406 (1970).

    PubMed  CAS  Google Scholar 

  • Formelli F., Carsana R., Pollini C.: Comparative pharmacokinetics and metabolism of doxorubicin and 4-demethoxy-4′-O-methyldoxorubicin in tumor-bearing mice.Cancer Chemother. Pharmacol.16, 15–21 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Fujii S., Kubo K., Johdo O., Yoshimoto A., Ishikura T., Naganawa H., Sawa T., Takeuchi T., Umezawa H.: A new anthracycline metabolite D788-1 (10-carboxy-13-deoxocarminomycin) in daunorubicin beer.J. Antibiot.39, 473–475 (1986).

    PubMed  CAS  Google Scholar 

  • Ganzina F., DiPietro N., Magni O.: Clinical toxicity of 4′-epidoxorubicin.Tumori71, 233–240 (1985).

    PubMed  CAS  Google Scholar 

  • Ganzina F., Pacciarini M.A., DiPietro N.: Idarubicin (4-demethoxydaunorubicin). A preliminary overview of preclinical and clinical studies.Invest. New Drugs4, 85–105 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Gauze G.F., Dudnik Yu. V.: Interactions of antineoplastic antibiotics and DNA.Antibiot. Chemother.28, 102–108 (1980).

    Google Scholar 

  • Goldin A., Venditti J.M., Geran R.: The effectiveness of the anthracycline analog 4′-epidoxorubicin in the treatment of experimental tumors: A review.Invest. New Drugs3, 3–21 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Goormaghtigh E., Ruysschaert J.M.: Anthracycline glycoside-membrane interactions.Biochim. Biophys. Acta779, 271–288 (1984).

    PubMed  CAS  Google Scholar 

  • Gräfe U., Eritt I., Fleck W.F.: Evidence against a general role of NADP-glycohydrolase in cytodifferentiation ofStreptomyces griseus.J. Antibiot.34, 1385–1387 (1981).

    PubMed  Google Scholar 

  • Gräfe U., Reinhardt G., Schade W., Krebs D., Eritt I., Fleck W.F., Heinrich E., Radics L.: Isolation and structure of novel autoregulators fromStreptomyces griseus.J. Antibiot.35, 609–614 (1982a).

    PubMed  Google Scholar 

  • Gräfe U., Schade W., Eritt I., Fleck W.F., Radics L.: A new inducer of antracycline biosynthesis fromStreptomyces viridochromogenes.J. Antibiot.34, 1722–1723 (1982b).

    Google Scholar 

  • Gräfe U., Eritt I.: On the biological inactivity of 4,5-dihydroxy-n-decanoic acid-4-lactones.J. Antibiot.36, 1592–1593 (1983).

    PubMed  Google Scholar 

  • Gräfe U., Schade W., Reinhardt G., Eritt I., Fleck W.F., Radics L.: Interspecific inducers of cytodifferentiation and anthracycline biosynthesis fromStreptomyces bikiniensis andS. cyaneofuscatus.Biotechnol. Lett.5, 591–596 (1983a).

    Article  Google Scholar 

  • Gräfe U., Reinhardt G., Eritt I., Fleck W.F., Steudel A.: Effect of the autoregulator fromStreptomyces griseus on surface cultures of the blocked mutant JA 5142/86.Z. Allg. Mikrobiol.23, 559–565 (1983b).

    Google Scholar 

  • Gräfe U., Reinhardt G., Krebs D., Eritt I., Steudel A.: Effect of the autoregulator fromStreptomyces griseus JA 5142 on surface culture of blocked mutant ZIMET 43682.Z. Allg. Mikrobiol.23, 359–365 (1983c).

    Article  PubMed  Google Scholar 

  • Gräfe U., Reinhardt G., Krebs D., Eritt I., Fleck W.F.: Pleiotrophic effects of a butyrolactone-type autoregulator on mutants ofStreptomyces griseus blocked in cytodifferentiation.J. Gen. Microbiol.130, 1237–1245 (1984).

    PubMed  Google Scholar 

  • Gräfe U., Sarfert E.: Reconstitution by a butyrolactone autoregulator of the parental protein pattern in an asporogenous mutant ofStreptomyces griseus.FEMS Microbiol. Lett.28, 249–253 (1985).

    Article  Google Scholar 

  • Gräfe U., Reinhardt G., Eritt I., Fleck W.F.: Pleiotropic regulatory systems involved in the cytodifferentiation of streptomycetes, pp. 819–822 inBiological, Biochemical and Biomedical Aspects of Actinomycetes (G. Szabó, S. Biró, M. Goodfellow, Eds.). Akadémiai Kiadó, Budapest 1986a.

    Google Scholar 

  • Gräfe U., Sarfert E., Eritt I.: Reconstitution by the factor A of the parental protein pattern in an asporogenous mutant ofStreptomyces griseus, p. 861 inBiological, Biochemical and Biomedical Aspects of Actinomycetes (G. Szabó, S. Biró, M. Goodfellow, Eds.). Akadémiai Kiadó, Budapest 1986b.

    Google Scholar 

  • Gräfe U., Eritt I., Fleck W.F.: On the role of gamma-butyrolactone autoregulators in the regulation of antibiotic production in streptomycetes, p. 75 inProc. 2nd Int. Symp. New Bioactive Metabolites from Microorganisms, Gera (GDR) 1988.

  • Grein A.: Development of anthracyclines of the daunorubicin group by genetic and fermentation studies.3rd Malaysian Microbiology Symposium. University Pertanian Malaysia, Serdang, Selangor 1980.

    Google Scholar 

  • Grein A.: Development of biosynthetic anthracyclines of the daunorubicin group by genetic and fermentation studies.Proc. Biochem.16 (10), 34–46 (1981).

    CAS  Google Scholar 

  • Grein A., Spalla C., DiMarco A., Canevazzi G.: Descrizione e classificatione di un attinomicete (Streptomyces peucetius sp.nova) producttore di una sostanza ad attivita antitumorale: La daunomicina.G. Microbiol.11, 109–118 (1963).

    Google Scholar 

  • Grein A., Merli S., Spalla C.: New anthracycline glycosides fromMicromonospora. I. Description of the producing strain.J. Antibiot.33, 1462–1468 (1980).

    PubMed  CAS  Google Scholar 

  • Grein A., Merli S., Spalla C.: Biosynthesis of anthracyclines inStreptomyces peucetius, pp. 263–265 inBiological, Biochemical and Biomedical Aspects of Actinomycetes (G. Szabó, S. Biró, M. Goodfellow, Eds.). Akadémiai Kiadó, Budapest 1986.

    Google Scholar 

  • Hamilton B., White R., McGuire J., Montgomery P., Stroshane R., Kalita C., Pandey R.: Improvement of the daunorubicin fermentation realized at 10,000 liter fermentor scale, pp. 63–68 inAdvances in Biotechnology, Vol. 1 (M. Moo-Young, C.W. Robinson, Eds.). Pergammon Press, Toronto 1981.

    Google Scholar 

  • Hisamatzu T., Suzuki K., Sakakibara S., Komuro K., Nagasawa M., Rakeuchi T., Umezawa H.: Antitumor spectrum of a new anthracycline, (2″R)-4′-O-tetrahydropyranyladriamycin, and effect on the cellular immune response in mice.Japan J. Cancer Res. (Gann)76, 1008–1020 (1985).

    Google Scholar 

  • Ho C.C., Chye M.L.: Construction of a genetic map of chromosomal auxotrophic markers inStreptomyces peucetius var.caesius.J. Gen. Appl. Microbiol.31, 231–241 (1985).

    CAS  Google Scholar 

  • Huk J.: Improved yields of anthracycline complex byStreptomyces coeruleorubidus. 4th Symposium of the Socialist Countries on Biotechnology, Varna (Bulgaria). Abstract Book, p. 110 (1986).

  • Huk J.: Ethyl-methanesulfonate mutants ofStreptomyces coeruleorubidus. 2nd Int. Symp. Overproduction of Microbial Products, České Budějovice (Czechoslovakia). Abstract Book, p. 105 (1988).

  • Ihn W., Wagner C., Fleck W.F., Tresselt D., Eritt I., Sedmera P.: Leukaemomycin-geblockte Mutanten desStreptomyces griseus und Ihre Pigmente. II. Neue 7-Hydroxy-bisanhydro-rhodomycinone aus der Mutante ZIMET 43707/1P.Z. Allg. Mikrobiol.24, 525–532 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Issaq H.J., Risser N.H., Aszalos A.: Thin-layer chromatographic separation and quantitation of the anti-tumor agent daunorubicin in fermentation media.J. Liq. Chromatogr.2, 533–538 (1979).

    Article  CAS  Google Scholar 

  • Jizba J.V., Sedmera P., Vokoun J., Blumauerová M., Vaněk Z.: Naphthacenequinone derivatives from a mutant strain ofStreptomyces coeruleorubidus.Coll. Czech. Chem. Commun.45, 764–771 (1980).

    CAS  Google Scholar 

  • Jizba J.V., Sedmera P., Vokoun J., Blumauerová M., Vaněk Z.: Epimer of 7-deoxyaklavinone.Coll. Czech. Chem. Commun.46, 2129–2135 (1981).

    CAS  Google Scholar 

  • Kaye S., Merry S.: Tumour cell resistance to anthracyclines—a review.Cancer Chemother. Pharmacol.14, 96–103 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Khokhlov A.S.: Actinomycete autoregulators, pp. 791–806 inBiological, Biochemical and Biomedical Aspects of Actinomycetes (G. Szabó, S. Biró, M. Goodfellow, Eds.). Akadémiai Kiadó, Budapest 1986.

    Google Scholar 

  • Khokhlov A.S.: Low molecular weight microbial bioregulators of secondary metabolism, pp. 97–109 inOverproduction of Secondary Metabolites (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds.). Academic Press, London 1982.

    Google Scholar 

  • Krassilnikova O.L., Anissova L.N., Romanova N.B., Bartoshevich Yu.E.: Chemical mutagenesis of protoplasts in selection of doxorubicin-producing organismStreptomyces peucetius subsp.caesius. 2nd Int. Symp. Overproduction of Microbial Products, České Budějovice (Czechoslovakia). Abstract Book, p. 216 (1988).

  • Lapchinskaya O.A., Saburova T.P., Sinyagina O.P., Konstantinova N.V., Filicheva V.A., Nechaeva N.P., Terekhova L.P., Ukholina R.S.: Spontaneous and induced variation ofActinomyces rubiginosohelvolus, a new organism producing rubomycin.Antibiotiki20, 1061–1065 (1975).

    CAS  Google Scholar 

  • Lavelle F.: Structure et activité des anthracyclines.Pathol. Biol.35, 11–19 (1987).

    PubMed  CAS  Google Scholar 

  • Liu W.C., Rao K.V.: Mitocromin and process for preparing same.US Pat. 3 852 425 (1975).

    Google Scholar 

  • Manafova N.A.: Conditions for rubomycin production byActinomyces coeruleorubidus. (In Russian)Antibiotiki11, 872–877 (1966).

    PubMed  CAS  Google Scholar 

  • Mancy D., Florent J., Preud’homme J.: Process for the preparation of daunorubicin.US Pat. 3 875 010 (1975).

  • Mancy D., Ninet L., Preud’homme J.: Process for the preparation of daunorubicin by cultivating aStreptomyces species.US Pat. 3 997 661 (1976).

    Google Scholar 

  • Matějů J., Vokoun J., Blumauerová M., Vaněk Z.: 7-Deoxy-13-dihydrodaunomycinone in cultures ofStreptomyces coeruleorubidus.Folia Microbiol.23, 246–248 (1978).

    Article  Google Scholar 

  • McGuire J.C., Hamilton B.K., White R.J.: Approaches to development of the daunorubicin fermentation.Proc. Biochem.14 (12), 2–5 (1979).

    CAS  Google Scholar 

  • McGuire J.C., Glotfelty G., White R.J.: Use of cerulenin in strain improvement of the daunorubicin fermentation.FEMS Microbiol. Lett.9, 141–143 (1980a).

    Article  CAS  Google Scholar 

  • McGuire J.C., Thomas M.C., Stroshane R.M., Hamilton B.K., White R.J.: Biosynthesis of daunorubicin glycosides: Role of ε-rhodomycinone.Antimicrob. Agents Chemother.18, 454–464 (1980b).

    PubMed  CAS  Google Scholar 

  • Merli S., Garofano L., Caruso M., Colombo A.L., Torti F.: Physiological and genetic study onStreptomyces peucetius and its mutants.2nd Int. Symp. Overproduction of Microbial Products, České Budějovíce (Czechoslovakia). Abstract Book, p. 57 (1988).

  • Neidle S., Sanderson M.R.: The interactions of daunomycin and adriamycin with nucleic acids, pp. 35–56 inMolecular Aspects of Anti-cancer Drug Action; Topics in Molecular and Structural Biology, Vol. 3 (S. Neidle, M.J. Warning, Eds.). Verlag-Chemie, Leipzig 1983.

    Google Scholar 

  • Oki T.: Structure-activity relationships of antitumor anthracycline antibiotics and drug development.Studia Biophys.104, 169–200 (1984a).

    CAS  Google Scholar 

  • Oki T.: Recent developments in the process improvement of production of antitumor anthracycline antibiotics.Adv. Biotechnol. Proc.3, 163–196 (1984b).

    CAS  Google Scholar 

  • Oki T., Matsuzawa Y., Kiyoshima A., Naganawa H., Takeuchi T., Umezawa H.: New anthracycline, feudomycins, produced by the mutant fromStreptomyces coeruleorubidus ME 130-A4.J. Antibiot.34, 783–790 (1981).

    PubMed  CAS  Google Scholar 

  • Oki T., Takatsuki Y., Yoshimoto A., Tomoyuki I., Tomio T., Umezawa H.: Process for production of adriamycin.Europ. Pat. 0 061 737 (1982).

  • Omura S.: The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis.Bacteriol. Rev.40, 681–697 (1976).

    PubMed  CAS  Google Scholar 

  • Omura S., Takesnima H.: Inhibition of the biosynthesis of leucomycin, a macrolide antibiotic, by cerulenin.J. Biochem.75, 193–195 (1974).

    PubMed  CAS  Google Scholar 

  • Pearlman L.F., Simpkins H.: The differential effects produced by daunomycin and adriamycin on RNA, polynucleotides, single stranded, supercoiled DNA, and nucleosomes.Biochem. Biophys. Res. Commun.131, 1033–1040 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Pinnert S., Ninet L., Preud’homme J.: Antibiotic daunorubicin and its preparation.US Pat. 3 989 598 (1976).

    Google Scholar 

  • Preobrazhenskaya T.P., Manaphova N.A., Gauze G.F.: Systematic position, variation and antibiotic properties of rubomycin producing organism. (In Russian)Antibiotiki11, 867–872 (1966).

    Google Scholar 

  • Přikrylová V., Jizba J., Huk J., Lipavská H., Blumauerová M.: The specificity of enzymes participating in microbial transformations of anthracyclines, p. 126 inINTERBIOTECH’87-Enzyme Technology (J. Zemek, I. Špilda, Eds.), Bratislava 1987.

  • Rahman A., Fumagalli A., Barbieri B., Schein P.S., Casazza A.M.: Antitumor and toxicity evaluation of free doxorubicin and doxorubicin entrapped in cardiolipin liposomes.Cancer Chemother. Pharmacol.16, 22–27 (1986).

    PubMed  CAS  Google Scholar 

  • Saburova T.P., Lapchinskaya O.A., Kruglyak E.B.: Selection ofAntinomyces coeruleorubidus, rubidomycin-producing organism. (In Russian).Antibiotiki19, 509–514 (1974).

    PubMed  CAS  Google Scholar 

  • Saburova T.P., Lapchinskaya O.A., Sinyagina O.P., Trutneva E.M., Lvova N.A.: Auxotrophic mutants in selection ofActinomyces coeruleorubidus, an organism producing rubomycin. (In Russian)Antibiotiki22, 1095–1100 (1977).

    PubMed  CAS  Google Scholar 

  • Sadakane N., Tanaka Y., Omura S.: Hybrid biosynthesis of a new macrolide antibiotic by a daunomycin-producing microorganism.J. Antibiot.36, 921–922 (1983).

    PubMed  CAS  Google Scholar 

  • Schumann G., Stengel C., Eckardt K., Ihn W.: Biotransformation of aklanonic acid by blocked mutants of anthracycline-producing strains ofStreptomyces galilaeus andStreptomyces peucetius.J. Basic Microbiol.26, 249–255 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Shirling E.B., Gottlieb D.: Methods for characterization ofStreptomyces species.Int. J. Syst. Bacteriol.16, 313–340 (1966).

    Article  Google Scholar 

  • Shirling E.B., Gottlieb D.: Cooperative description of type cultures ofStreptomyces. III. Additional species description from first and second studies.Int. J. Syst. Bacteriol.18, 279–392 (1968).

    Google Scholar 

  • Strauss D., Fleck W.: Leukaemomycin, an antibiotic with antitumor activity. II. Isolation and identification.Z. Allg. Mikrobiol.15, 615–623 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Stroshane R.M., Guenther E.C., Piontek J.L., Aszalos A.A.: A rapid high performance liquid chromatographic assay for total derivable daunorubicin in fermentation broth.178th Ann. Meet. American Chemical Society, Washington (DC). Abstract ANAL 044 (1979).

  • Stroshane R.M.: Production of daunorubicin.Adv. Biotechnol. Proc.3, 141–161 (1984).

    CAS  Google Scholar 

  • Takahashi Y., Naganawa H., Takeuchi T., Umezawa H., Komiyama T., Oki T., Inui T.: The structure of baumycins A1, A2, B1, B2, C1 and C2.J. Antibiot.30, 622–624 (1977).

    PubMed  CAS  Google Scholar 

  • Tunac J.B., Graham B.D., Dobson W.E., Lenzini M.D.: Fermentation by a new daunomycin-producing organism,Streptomyces insignis ATCC 31913.Appl. Environ. Microbiol.49, 265–268 (1985).

    PubMed  CAS  Google Scholar 

  • Umezawa H.: Recent advances in antitumor antibiotics.Antibiot. Chemother.23, 76–87 (1978).

    PubMed  CAS  Google Scholar 

  • Vaněk Z., Tax J., Komersova I., Sedmera P., Vokoun J.: Anthracyclines.Folia Microbiol.22, 139–159 (1977).

    Article  Google Scholar 

  • Vanék Z., Matějů J., Cudlin J., Blumauerova M., Sedmera P., Jizba J., Královcová E., Tax J., Gauze G.F.: Biosynthesis of daunomycin-related anthracyclines, pp. 283–289 inOverproduction of Microbial Products (V. Krumphanzl, B. Sikyta, Z. Vaněk, Eds.). Academic Press, London 1982.

    Google Scholar 

  • Wagner C., Stengel C., Eritt I., Schumann G., Fleck W.F.: Leukaemomycin-geblockte Mutanten desStreptomyces griseus und Ihre Pigmente.Z. Allg. Mikrobiol.21, 751–760 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Wagner C., Eckardt K., Schumann G., Ihn W., Tresselt D.: Microbial transformation of aklanonic acid, a potential early intermediate in the biosynthesis of anthracyclines.J. Antibiot.37, 691–692 (1984).

    PubMed  CAS  Google Scholar 

  • Weiss R.B., Sarosy G., Clagett-Carr K., Russo M., Leyland-Jones B.: Anthracycline analogs: The past, present, and future.Cancer Chemother Pharmacol.18, 185–197 (1986).

    Article  PubMed  CAS  Google Scholar 

  • White R.J.: Anthracyclines, pp. 277–292 inBiochemistry and Genetic Regulation of Commercially Important Antibiotics (L.C. Vining, Ed.), Biotechnology Series, Vol. 3. Addison-Wesley, London 1983.

    Google Scholar 

  • White R.J., Stroshane R.M.: Daunorubicin and adriamycin: Properties, biosynthesis, and fermentation, pp. 569–594 inBiotechnology of Industrial Antibiotics (E.J. Vandamme, Ed.), Drugs and Pharmaceutical Sciences, Vol. 22. M. Dekker, New York 1984.

    Google Scholar 

  • Yoshimoto A., Matsuzawa Y., Oki T., Naganawa H., Takeuchi T., Umezawa H.: Microbial conversion of ε-pyrromycinone and ε-isorhodomycinone to 1-hydroxy-13-dihydrodaunomycin and N-formyl-13-dihydrodaunomycin and their bioactivities.J. Antibiot.33, 1150–1157 (1980a).

    PubMed  CAS  Google Scholar 

  • Yoshimoto A., Oki T., Takeuchi T., Umezawa H.: Microbial conversion of anthracyclinones to daunomycin by blocked mutants ofStreptomyces coeruleorubidus.J. Antibiot.33, 1158–1166 (1980b).

    PubMed  CAS  Google Scholar 

  • Yoshimoto A., Oki T., Umezawa H.: Biosynthesis of daunomycinone from aklavinone and ε-rhodomycinone.J. Antibiot.33, 1199–1201 (1980c).

    PubMed  CAS  Google Scholar 

  • Yoshimoto A., Fujii S., Johdo O., Kuro K., Ishikura T., Naganawa H., Sawa T., Takeuchi T., Umezawa H.: Intensely potent anthracycline oxaunomycin produced by a blocked mutant of the daunorubicin-producing microorganism.J. Antibiot.39, 902–909 (1986).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huk, J., Blumauerova, M. Streptomycetes producing daunomycin and related compounds: Do we know enough about them after 25 years?. Folia Microbiol 34, 324–349 (1989). https://doi.org/10.1007/BF02814475

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814475

Keywords

Navigation