Skip to main content
Log in

Effects of the physiological state of five yeast species on H+-ATPase-related processes

  • Papers
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Effects of starvation and glucose preincubation on membrane potential, ATPase-mediated acidification and glutamic acid transport were studied in yeast speciesSaccharomyces cerevisiae, Schizosaccharomyces pombe, Dipodascus magnusii, Lodderomyces elongisporus andRhodotorula gracilis. Themembrane potential was highest after preincubation with glucose in all species butL. elongisporus andR. gracilis. In all cases the membranes were depolarized in the presence of 20 mmol/L KCl and hyperpolarized with 50 μmol/L diethylstilbestrol (DES). Theextracellular acidification caused by addition of glucose was highest after preincubation with glucose in all cases except inR. gracilis where there was none. In all cases except inR. gracilis addition of KCl caused a marked increase in the acidification rate. Addition of DES with glucose caused a large decrease in rate inS. cerevisiae but had much less effect on the other species.Transport of glutamic acid was clearly increased after pretreatment with glucose inS. cerevisiae, S. pombe andD. magnusii (mainly due to enhanced synthesis of the carrier) but actually decreased inR. gracilis andL. elongisporus. Addition of DES had an inhibitory effect in all species but much more pronounced inS. cerevisiae andS. pombe than in others. In general, both the acidification and the transport of glutamate were enhanced after preincubation with glucose but much more so in the semianaerobic species, such asS. cerevisiae, than in the strict aerobes (R. gracilis) where the effect was occasionally negative. There was no relationship between the ATPase-mediated acidification and the membrane potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • García J.C., Kotyk A.: Uptake ofl-lysine by a double mutant ofSaccharomyces cerevisiae.Folia Microbiol. 33, 285–291 (1988).

    Google Scholar 

  • Goffeau A., Coddington A., Schlesser A.: Plasma membrane H+ ATPase: Ion and metabolite transport in the yeastSchizosaccharomyces pombe, pp. 397–429 inMolecular Biology of the Fission Yeast (A. Nasim, P. Young, B.F. Johnson, Eds) Academic Press, San Diego 1989.

    Google Scholar 

  • Hauer R., Uhlemann G., Neumann J., Höfer M.: Proton pumps of the plasmalemma of the yeastRhodotorula gracilis. Their coupling to fluxes of potassium and other ions.Biochim. Biophys. Acta 649, 680–690 (1981).

    Article  CAS  Google Scholar 

  • Horák J., Řihová L., Kotyk A.: Energization of sulfate transport in yeast.Biochim. Biophys. Acta 649, 436–440 (1981).

    Article  Google Scholar 

  • Knotková A., Kotyk A.: Role of sugars in phosphate transport in baker's yeast.Folia Microbiol. 17, 251–260 (1972).

    Google Scholar 

  • Knotková A., Kotyk A.: Dependence of phosphate transport in yeast on glycolytic substrates.Folia Microbiol. 26, 377–381 (1981).

    Article  Google Scholar 

  • Kotyk A.: Kinetic studies of transport in yeast.Meth. Enzym. 174, 567–591 (1989).

    Article  CAS  Google Scholar 

  • Kotyk A.: Interaction of 2-deoxy-d-glucose and adenine with phosphate anion uptake in yeast.Folia Microbiol. 37, 401–403 (1992).

    CAS  Google Scholar 

  • Kotyk A.: Mechanisms of extracellular acidification by yeasts.Rom. J. Biophys. 3, 000-000 (1993).

    Google Scholar 

  • Kotyk A., Dvořáková M.: Are proton symports in yeast directly linked to H+-ATPase acidification?Biochim. Biophys. Acta 1104, 293–298 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kotyk A., Michaljaničová D.: Uptake of trehalose bySaccharomyces cerevisiae.J. Gen. Microbiol. 110, 323–332 (1979).

    PubMed  CAS  Google Scholar 

  • Kotyk A., Říhová L.: Energy requirements for amino acid uptake inSaccharomyces cerevisiae.Folia Microbiol. 17, 353–356 (1972).

    CAS  Google Scholar 

  • Kotyk A., Horák J., Knotková A.: Transport protein synthesis in non-growing yeast cells.Biochim Biophys. Acta 698, 243–251 (1982).

    PubMed  CAS  Google Scholar 

  • Kotyk A., Dvořáková M., Georghiou G.: Role of alkaline metal ions in the H+-ATPase activity of various yeast species.Biochem. Internat. 28, 1089–1096 (1992).

    CAS  Google Scholar 

  • Opekarová M., Sigler K.: Acidification power: Indicator of metabolic activity and autolytic changes inSaccharomyces cerevisiae.Folia Microbiol. 27, 395–403 (1082).

    Google Scholar 

  • Rezková K., Horák J., Sychrová H., Kotyk A.: Transport ofl-glutamic acid in the fission yeastSchizosaccharomyces pombe.Biochim. Biophys. Acta 1103, 205–211 (1992).

    Article  PubMed  Google Scholar 

  • Serrano R.:In vivo glucose activation of the yeast plasma membrane ATPase.FEBS Lett. 156, 11–14 (1982).

    Article  Google Scholar 

  • Sigler K., Kotyk A., Knotková A., Opekarová M.: Processes involved in the creation of buffering capacity and in substrate-induced proton extrusion in the yeastSaccharomyces cerevisiae.Biochim. Biophys. Acta 643, 583–592 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Sychrová H., Horák J., Kotyk A.: Transport ofl-leucine in the fission yeastSchizosaccharomyces pombe.Yeast 5, 199–207 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotyk, A., Georghiou, G. Effects of the physiological state of five yeast species on H+-ATPase-related processes. Folia Microbiol 38, 467–472 (1993). https://doi.org/10.1007/BF02814397

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02814397

Keywords

Navigation