Advertisement

Folia Microbiologica

, Volume 40, Issue 3, pp 341–344 | Cite as

Effect of the fungicide chlorothalonil (Bravo) on some metabolic activities of aquatic fungi

  • F. T. El-Hissy
  • M. A. El-Nagdy
  • H. M. El-Sharouny
  • G. A. Abd-Elaah
Papers

Abstract

Physiological responses ofAchlya proliferoides, Saprolegnia ferax andDictyuchus sterilis as affected by the fungicide chlorothalonil (Bravo) were determined. Glucose consumption differed in dependence on the organisms used. Ammonia and peptide nitrogen secretion were stimulated inS. ferax but inhibited in the other two organisms. All doses of the fungicide used decreased phosphorus absorption and increased acid phosphatase activity. The lowest concentrations (30 ppm) of the fungicide increased DNA, RNA and protein synthesis while inhibition was observed at moderate or high concentrations. Aspartate aminotransferase and alanine aminotransferase activities were inhibited inA. proliferoides, stimulated inS. ferax but remained similar to that of the control inD. sterilis.

Keywords

Chlorothalonil Fusarium Moniliforme Test Fungus Carboxin Water Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akatsuka T., Kodama O., Yamada H.: A novel mode of action of kitazin P inPyricularia oryzœ.Agric. Biol. Chem.41, 211–212 (1977).Google Scholar
  2. Alderman D.J., Polglase J.: A comparative investigation of the effects of fungicides onSaprolegnia parasitica andAphanomyces astaci.Trans. Brit. Mycol. Soc.83, 313–318 (1984).CrossRefGoogle Scholar
  3. Badour S.S.A.: Analytisch-chemische Untersuchung des kalimangels beiChlorella in Vergleich mit anderen Mangelzustanden.PhD Thesis. Göttingen Universität (Germany) 1959.Google Scholar
  4. Bergmeyer H.U.:Methods of Enzymatic Analysis, Vol. 2, pp. 1–96. Academic Press, New York-San Francisco-London 1974.Google Scholar
  5. bio-Merieux:Biochemistry, Mary-1, Etoile 69260 Charbonnières-les-Bains (France) 1980.Google Scholar
  6. Chaney A.L. Marbach E.P.: Modified reagents for determination of urea and ammonia.J. Clin. Chem.8, 130–132 (1962).Google Scholar
  7. El-Awady A.A.: Effect of soil pollution with pesticides on the microflora of Saudi Arabia soil.MSc. Thesis; General Presidency for Girls Education, Girls College of Education, Jeddah (Kingdom of Saudi Arabia) 1984.Google Scholar
  8. Fales F.W.: The assimilation and degradation of carbohydrates by yeast cells.Biol. Clim.193, 113 (1956).Google Scholar
  9. Garber R.C., Yoder O.C.: Isolation of DNA from filamentous fungi and separation into nuclear, mitochondrial, ribosomal and plasmid components.Anal. Biochem.135, 416–422 (1983).PubMedCrossRefGoogle Scholar
  10. Henry R.: Determination of total protein, p. 182 inClinical Chemistry. Principal and Techniques. Harper-Row, New York 1964.Google Scholar
  11. Jackson M.L.:Soil Chemical Analysis. Constable & Co., London 1958.Google Scholar
  12. Kuhn P.J., Pitt D., Lee S.A., Walkely G., Sheppard A.N.: Effects of dimethomorph on the morphology and ultrastructure ofPhytophthora.Mycol. Res.95, 333–340 (1991).CrossRefGoogle Scholar
  13. Manavathu E.K., Thomas D.S.: Cytochalasin A and respiratory inhibition in the water moldAchlya ambisexualis.Can. J. Microbiol.29, 15–20 (1983).CrossRefGoogle Scholar
  14. Mathre D.E.: Mode of action of oxathiin systemic fungicides. I. Effect of carboxin and oxycarboxin on the general metabolism of several basidiomycetes.Phytopathology60, 671–676 (1970).PubMedCrossRefGoogle Scholar
  15. Newcombe G., Thomas P.L.: Fungicidal and fungistatic effects of carboxin onUstilago nuda.Phytopathology80, 509–512 (1990).CrossRefGoogle Scholar
  16. Ragsdale N.N., Sisler H.D.: Metabolic effects related to fungitoxicity of carboxin.Phytopathology60, 1422–1427 (1970).PubMedGoogle Scholar
  17. Sambrook J., Fritch E.F., Maniatis T.:Molecular Cloning. A Laboratory Manual, 2nd ed., p. E5. Cold Spring Harbor Laboratory Press, New York 1989.Google Scholar
  18. Schegal H.G.: Die Verwertung organischer Säuren durchChlorella in Licht.Planta47, 510 (1956).CrossRefGoogle Scholar
  19. Sevensson B.H., Sanderlund R.:Nitrogen, Phosphorus and Sulphur—Global Cycles 1st ed. Berling Ska Boktryckenet, Lund (Sweeden) 1976.Google Scholar
  20. Stankewitz H.B., Buchenauer H.: Effect of flubenzimine (Cropotex) on mycelial growth and spore germination of various phytopathogenic fungi.J. Plant Dis. Protect.99, 360–370 (1992).Google Scholar
  21. Tillman R.W., Sisler H.D.: Effect of chloroneb on the growth and metabolism ofUstilage maydis.Phytopathology63, 219 (1973).CrossRefGoogle Scholar
  22. Timberlake W.E., McDowell L., Cheney Griffin D.H.: Protein synthesis during the differentiation of sporangia in the water moldAchlya.J. Bacteriol.116, 67–73 (1973).PubMedGoogle Scholar

Copyright information

© Folia Microbiologica 1995

Authors and Affiliations

  • F. T. El-Hissy
    • 1
  • M. A. El-Nagdy
    • 1
  • H. M. El-Sharouny
    • 2
  • G. A. Abd-Elaah
    • 2
  1. 1.Botany Department, Faculty of ScienceAssiut UniversityAssiutEgypt
  2. 2.Botany Department, Faculty of ScienceAssiut UniversitySohagEgypt

Personalised recommendations