Skip to main content

Karyological variation in the group ofMyosotis alpestris (boraginacea)

Abstract

A total of 6 population samples ofMyosotis stenophylla Knaf, a rare species showing great ecological disjunction in its distribution, were examined to clarify the present status of its karyological variation. In order to elucidate relationships between lowland tetraploid populations ofM. stenophylla and diploid and tetraploid montane populations ofM. alpestris F.W. Schmidt, four population samples ofM. alpestris were also examined. The karyotypes of all populations ofM. alpestris s.l. studied were highly asymmetrical and heterogeneous, being composed of metacentric, submetacentric, subtelocentric and satellited acrocentric chromosomes. The karyotype formula for haploid chromosome set was established: n=x=12=6m+2sm+3st+1tSAT. Multivariate analysis based on chromosome length and shape showed significant differences between diploid and tetraploid forms ofM. alpestris s.l. Four numerical parameters, used to characterize the karyotype ofM. stenophylla, revealed significant differences between populations on serpentine and on non-serpentine substrates. In addition, the noticeable affinity of the karyotype of non-serpentine populations to that ofM. alpestris tetraploids has been shown by means of discriminant analysis. These data suggest that the unique features of serpentine play an important role in the origin of karyotypic differentiation within populations ofM. stenophylla.

This is a preview of subscription content, access via your institution.

References

  • Baker A.J.M., Proctor J. &Reeves R.D. (eds.) (1993):The vegetation of ultramafic (serpentine) soil. Intercept, Andover.

    Google Scholar 

  • Brooks R.R. (1987):Serpentine and its vegetation: A multidisciplinary approach, Dioscorides Press, Portland.

    Google Scholar 

  • Cobon A.M. &Murray B.G. (1983) Evidence for the absence of chromosome differentiation in populations ofSilene maritima With. growing on heavy-metal-contaminated sites.New Phytol. 94: 643–646.

    Article  Google Scholar 

  • Denton M.F. (1979): Factors contributing to evolutionary divergence and endemism inSedum sectionGormania (Crassulaceae).Taxon 28: 149–155.

    Article  Google Scholar 

  • Dubcovsky J. &Martínez A.J. (1992): Cytotaxonomy of theFestuca spp. from Patagonia.Canad. J. Bot. 70: 1134–1140.

    Google Scholar 

  • Dvořáková M. (1988):Minuartia smejkalii, eine neue Art aus derMinuartia gerardii-Gruppe (Caryphyllaceae).Preslia 60: 1–9.

    Google Scholar 

  • Grau J. (1964): Zytotaxonomie derMyosotis alpestris-und derMyosotis sylvatica-Gruppe in Europa.Öster. Bot. Z. 111: 561–617.

    Article  Google Scholar 

  • Higgins S.S. &Mack R.N. (1987): Comparative responses ofAchillea millefolium ecotypes to competition and soil type.Oecologia 73: 591–597.

    Article  Google Scholar 

  • Kruckeberg A.R. (1984): California serpentines: flora, vegetation, geology, soils and management problems.Univ. Calif. Publ. Bot. 78.

  • Kruckeberg A.R. (1986): An essay: the stimulus of unusual geologies for plant speciation.Syst. Bot. 11: 455–463.

    Article  Google Scholar 

  • Kruckeberg A.R. (1992): Plant life of western North American ultramafics. In:Roberts B.A. &Proctor J. (eds.),The ecology of areas with serpentinized rocks. A world view Kluwer Acad. Publ., Dordrecht, pp. 31–73.

    Google Scholar 

  • Lausi D. &Cusma Velari T. (1986): Caryological and morphological investigations on a new zinc violet.Stud. Geobot. 6: 123–129.

    Google Scholar 

  • Levan A., Fredga K. &Sandberg A.A. (1964): Nomenclature for centromeric position on chromosomes.Hereditas 52: 201–220.

    Article  Google Scholar 

  • Mayer M.S. &Soltis P.S. (1994): The evolution of serpentine endemics: A chloroplast DNA Physlogeny of theStreptanthus glandulosus complex (Cruciferae).Syst. Bot. 19: 537–574.

    Article  Google Scholar 

  • Mayer M.S., Soltis P.S. &Soltis D.E. (1994): The evolution of theStreptanthus glandulosus complex (Cruciferae): Genetic divergence and gene flow in serpentine endemics.Amer. J. Bot. 8: 1288–1299.

    Article  Google Scholar 

  • Murray B.G., Cameron E.K. &Standring L.S. (1992): Chromosome numbers, karyotypes, and nuclear DNA variation inPratia Gaudin (Lobeliaceae).New Zealand J. Bot. 30: 181–187.

    Google Scholar 

  • Narayan R.K.J. (1982): Discontinuous DNA variation in the evolution of plant species: The genusLathyrus.Evolution 36: 877–891.

    Article  Google Scholar 

  • Novák F.A. (1960): Zur Phylogenie der Serpentin-typen.Preslia 32: 1–8.

    Google Scholar 

  • Raven P.H. (1964): Catastrophic selection and edaphic endemism.Evolution 18: 336–338.

    Article  Google Scholar 

  • Roberts B.A. &Proctor J. (eds.) (1992):The ecology of areas with serpentinized rocks. A world view. Kluwer Acad. Publ., Dordrecht.

    Google Scholar 

  • Rune O. (1953): Plant life on serpentines and related rocks in the North of Sweden.Acta Phytogeogr. Suec. 31: 1–139.

    Google Scholar 

  • Rune O. &Westerbergh A. (1991): Phytogeographic aspects of the serpentine flora of Scandinavia. In:Baker A.J.M., Proctor J. &Reeves R.D. (eds.),The vegetation of ultramafic (serpentine) soil. Intercept, Andover., pp. 451–459.

    Google Scholar 

  • Stebbins G.L. (1971):Chromosomal evolution in higher plants. Edward Arnold. London.

    Google Scholar 

  • Štěpánková J. (1993a): Report onMyosotis L. In:Kamari G., Felber F. & Gabari F.. (eds.),Mediterranean chromosome number reports 3, Fl. Medit. 3: 323–373.

  • Štěpánková J. (1993b): Remarks on the karyogeography of theMyosotis alpestris in Europe.Preslia 65: 325–334.

    Google Scholar 

  • Westerbergh A. &Saura A. (1992): The efect of serpentine on the population structure ofSilene dioica (Caryophyllaceae).Evolution 46: 1537–1548.

    Article  CAS  Google Scholar 

  • Zarco C.R. (1986): A new method for estimating karyotpe asymmetry.Taxon 35: 526–530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Štěpánková, J. Karyological variation in the group ofMyosotis alpestris (boraginacea) . Folia Geobot 31, 251–262 (1996). https://doi.org/10.1007/BF02812068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02812068

Keywords

  • Serpentine
  • Canonical Discriminant Analysis
  • Karyotype Formula
  • Alpd
  • Centromeric Index