Advertisement

Metallurgical Transactions A

, Volume 10, Issue 10, pp 1533–1541 | Cite as

The collapse of square section tubes in bending

  • P. H. Thornton
Mechanical Behavior

Abstract

The effect of changes in material properties and of geometry upon the load to initiate collapse, and also upon the energy to produce extensive plastic deformation during the three point bending of square section steel tubes, was examined. Over a wide range of material characteristics studied, the tensile strength gave the best correlation with the collapse load and energy characteristics. The geometric contribution to the effectiveness of the tube in resisting collapse was found to depend upon two factors, the relative density of the tube and the side dimension of the tube.

Keywords

Metallurgical Transaction Tube Size Collapse Mechanism Collapse Load Collapse Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. H. Thomton and C. L. Magee:J. Eng. Mater. Technol., 1977, vol. 99, pp. 114–120.Google Scholar
  2. 2.
    C. L. Magee and P. H. Thomton: S.A.E., preprint 780434, SAE Annual Meeting Detroit, February 1978.Google Scholar
  3. 3.
    Y. Ohkubo, T. Akamatsu, and K. Shirasawa: S.A.E. preprint 740040. SAE Annual Meeting, Detroit, February 1974.Google Scholar
  4. 4.
    K. Shirasawa, T. Akamatsu, and Y. Ohkubo: Japan Society of Automotive Engineers, Bulletin number 7, pp. 107–14, 1976.Google Scholar
  5. 5.
    N. Aya and K. Takahashi: Japan Society of Automotive Engineers, Bulletin number 7, pp. 65–74, 1976.Google Scholar
  6. 6.
    M. Tani and A. Fanahashi: S.A.E. preprint 780368, SAE Annual Meeting, Detroit, February 1978.Google Scholar
  7. 7.
    K. Toda, H. Gondok, H. Takechi, and M. Asuda:Met. Trans. A, 1976, vol. 7A, pp. 1637–42.CrossRefGoogle Scholar
  8. 8.
    S. G. Thomas, S. R. Reid, and W. Johnson:Int. J. Mech. Sci., 1976, vol. 18, pp. 325–33.CrossRefGoogle Scholar
  9. 9.
    A. R. Watson, S. R. Ried, and W. Johnson:Int. J. Mech. Sci., 1976, vol. 18, pp. 501–09.CrossRefGoogle Scholar
  10. 10.
    L. G. Afendik:Prikl. Mekh., 1970, vol. 6, pp. 39–44.Google Scholar
  11. 11.
    M. Zdunkiewicz:Mech. Miesiecznik Nauk-Technol., 1970, vol. 43, pp. 366–69.Google Scholar
  12. 12.
    L. G. Brazier:Proc. Roy. Soc., 1927, vol. A116, pp. 104–14.CrossRefGoogle Scholar
  13. 13.
    R. G. Davies:Met. Trans., A, 1978, vol. 9A, pp. 671–79.CrossRefGoogle Scholar
  14. 14.
    C. T. Eddy, R. J. Marcotte, and R. J. Smith:Trans. AIME, 1945, vol. 162, pp. 250–67.Google Scholar
  15. 15.
    Atlas of Isothermal Transformation and Cooling Transformation Diagrams, ASM, Metals Park, OH 44073, 1977.Google Scholar
  16. 16.
    S. P. Timoshenko and J. M. Gere:Theory of Elastic Stability, 2nd ed., p. 416, McGraw Hill, New York, 1961.Google Scholar
  17. 17.
    Op. cit.. p. 419.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1979

Authors and Affiliations

  • P. H. Thornton
    • 1
  1. 1.Metallurgy DepartmentFord Motor CompanyDearborn

Personalised recommendations