Skip to main content
Log in

Solid finite elements through three decades

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Conventionally, solid finite elements have been looked upon as just generalizations of two-dimensional finite elements. In this article we trace their development starting from the days of their inception. Keeping in tune with our perceptions on developing finite elements, without taking recourse to any extra variational techniques, we discuss a few of the techniques which have been applied to solid finite elements. Finally we critically examine our own work on formulating solid finite elements based on the solutions to the Navier equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad S, Irons B M 1974 An assumed stress approach to refined isoparametric finite elements in three dimensions. InFinite element methods in engineering, University of New South Wales

  • Ahmad S, Irons B M, Zienkiewicz O C 1970 Analysis of thick and thin shell structures by curved elements.Int. J. Numer. Methods Eng. 2: 419–451

    Article  Google Scholar 

  • Andelfinger U, Ramm E 1993 EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to hr-elements.Int. J. Numer. Methods Eng. 36: 1311–1337

    Article  MATH  Google Scholar 

  • Argyris J H 1965 Matrix analysis of three-dimensional elastic media small and large displacements.AIAA J. 3: 45–51

    Article  MATH  Google Scholar 

  • Argyris J H, Fried I 1968a The lumina element for the matrix displacement method.Aeronaut. J. R. Aeronaut. Soc. 72: 514–517

    Google Scholar 

  • Argyris J H, Fried I, Scharpf D W 1968b The hermes8 element for the matrix displacement method.Aeronaut. J. R. Aeronaut. Soc. 72: 613–617

    Google Scholar 

  • Argyris J H, Fried I, Scharpf D W 1968c The tet20 and tea8 elements for the matrix displacement method.Aeronaut. J. R. Aeronaut. Soc. 72: 618–623

    Google Scholar 

  • Bachrach W E 1987 An efficient formulation of hexahedral elements with high accuracy for bending and incompressibility.Comput. Struct. 26: 45–467

    Article  Google Scholar 

  • Barlow J 1976 Optimal stress locations in finite element models.Int. J. Numer. Methods Eng. 10: 243–251

    Article  MATH  Google Scholar 

  • Barlow J 1989 More on optimal stress points-reduced integration, element distortions and error estimation.Int. J. Numer. Methods Eng. 28: 1487–1504

    Article  MATH  MathSciNet  Google Scholar 

  • Bathe K, Wilson E L 1976Numerical methods in finite element analysis (Englewood Cliffs, NJ: Prentice-Hall)

    MATH  Google Scholar 

  • Bathe K J, Dvorkin E N 1985 A four-node plate bending element based on the Mindilin/Reissner plate theory and mixed interpolation.Int. J. Numer. Methods Eng. 21: 367–383

    Article  MATH  Google Scholar 

  • Belytschko T, Liu W K 1986 Test problems and anomalies in shell finite elements. InReliability of methods for engineering analysis Proc. Int. Conf. Univ. College (Swansea: UK: Pineridge Press) pp 393–406

    Google Scholar 

  • Bergan P G, Nygard M K 1984 Finite elements with increased freedom in choosing shape functions.Int. J. Numer. Methods Eng. 20: 643–663

    Article  MATH  Google Scholar 

  • Brassioulis D 1989 On the basics of the shear locking problem ofC 0 isoparametric plate elements.Comput. Struct. 33: 169–185

    Article  Google Scholar 

  • Bretl J L, Cook R D 1979 A new eight-node solid element.Int. J. Numer. Methods Eng. 14: 593–615

    Article  MATH  Google Scholar 

  • Case W R, Mitchell R S, Vandegrift R E 1986 Improved accuracy in solid isoparametric elements using selectively reduced integration.NASA Conference Publication 2373, NASA, Washington, DC, p. 31

  • Case W R, Vandegrift R E 1986 Improved isoparametric solid and membrane elements.NASA Conference Publication 2419, NASA, Washington, DC, pp. 28–55

  • Chacour S 1972 ‘DANUTA,’ three-dimensional finite element program used in the analysis of turbomachinery.J. Basic Eng., ASME 94: 71–77

    Google Scholar 

  • Chandra S, Prathap G 1989 A field-consistent formulation for the 8-noded solid finite element.Comput. Struct. 33: 345–355

    Article  MATH  Google Scholar 

  • Chen W, Cheung Y K 1987 A new approach for the hybrid element method.Int. J. Numer. Methods Eng. 24: 1697–1709

    Article  MATH  MathSciNet  Google Scholar 

  • Chen W, Cheung Y K 1992 Three-dimensional 8-node and 20-node refined hybrid isoparametric elements.Int. J. Numer. Methods Eng. 35: 1871–1889

    Article  Google Scholar 

  • Cheung Y K, Chen W 1988 Isoparametric hybrid hexahedral elements for three dimensional stress analysis.Int. J. Numer. Methods Eng. 26: 677–693

    Article  MATH  Google Scholar 

  • Ciarlet P G 1978The finite element method for elliptic problems (New York: North Holland)

    MATH  Google Scholar 

  • Clough R W 1969 Comparison of three-dimensional finite elements InSymposium on application of finite element methods in civil engineering (eds) W H Rowan, R M Hackett (Nashville, TN: CASCE)

    Google Scholar 

  • Collatz L 1950The numerical treatment of differential equations (Berlin: Springer-Verlag)

    Google Scholar 

  • Conte S D, de Boor C 1980An introduction to numerical analysis, an algorithmic approach (Singapore: McGraw Hill)

    Google Scholar 

  • Cook R D 1977 More about artificial softening of finite elements.Int. J. Numer. Methods Eng. 11: 1334–1339

    Article  Google Scholar 

  • Cook R D, Malkus D S, Plesha M E 1989Concepts and applications of finite element analysis (New York: John Wiley and Sons)

    MATH  Google Scholar 

  • Courant R 1943 Variational methods for the solution of problems of equilibriums and vibrations.Bull. Am. Math. Soc. 49: 1–23

    MATH  MathSciNet  Google Scholar 

  • Courant R, Hilbert D 1953Methods of mathematical physics (New York: John Wiley and Sons)

    Google Scholar 

  • Crisfield M A 1984 A quadratic mindilin element using shear constraints.Comput. Struct. 18: 833–852

    Article  MATH  Google Scholar 

  • de Arrantes Oliveira E R 1968 Theoretical foundations of the finite element method.Int. J. Solids Struct. 4: 929–952

    Article  Google Scholar 

  • de Freitas J A T, Castro L M S 1992 Digital interpolation in mixed finite element structural analysis.Comput. Struct. 44: 743–751

    Article  MATH  Google Scholar 

  • Donea J, Lamain L G 1987 A modified representation of transverse shearC 0 quadrilateral plate elements.Comput. Methods. Appl. Mech. Eng. 63: 183–207

    Article  MATH  Google Scholar 

  • Dong Y F, de Freitas J A T 1992 An efficient 8-node incompatible solid element with stress interpolation.Comput. Struct. 44: 773–781

    Article  Google Scholar 

  • Ergatoudis J, Irons B M, Zienkiewicz O C 1968 Three-dimensional analysis of arch dams and their foundations. InSymposium on arch dams (London: Institution of Civil Engineers)

    Google Scholar 

  • Ferguson G H, Clark R D 1979 A variable thickness, curved beam and shell stiffening element with shear deformations.Int. J. Numer. Methods. Eng. 14: 581–592

    Article  MATH  Google Scholar 

  • Fjeld S A three-dimensional theory of elasticity. InFinite element methods in stress analysis (eds) I Holland, K Bell (Trondheim: Tapir Norway)

  • Flaganan D P, Belytschko T 1981 A uniform strain hexahedron and quadrilateral with orthogonal hour glass control.Int. J. Numer. Methods. Eng. 17: 679–706

    Article  Google Scholar 

  • Fried I 1974 Residual energy balancing technique in the generation of plate bending elements.Comput. Struct. 8: 771–778

    Article  Google Scholar 

  • Fried I 1975 Finite element analysis of thin elastic shells with residual energy balancing and the role of rigid body modes.J. Appl. Mech. 42: 99–104

    MATH  Google Scholar 

  • Gallagher R H, Padlog J, Bijlard P P 1962 Stress analysis of heated complex shapes.J. Am. Rocket Soc. 32: 700–707

    MATH  Google Scholar 

  • Gilewski W, Gomulinski A 1990 Physical shape functions: a new concept in finite elements.Finite Element News (3): 20–23.

  • Haggenmacher G W 1993 The shape of things. III.Finite Element News (2): 38–41

  • Heppler G R, Hansen J S 1987 Timoshenko beam finite elements using trigonometric basis functions.AIAA J. 26: 1378–1386

    Google Scholar 

  • Hoppe V 1973 Finite elements with harmonic interpolation functions. InThe mathematics of finite elements and applications (ed.) J R Whiteman (New York: Academic Press)

    Google Scholar 

  • Hughes J R, Allik H 1969 Finite elements for compressible and incompressible continua. InSymposium on application of finite element methods in civil engineering (ed.) W H Rowan, R M Hackett (Nashville, TN: CASCE)

    Google Scholar 

  • Irons B M 1966 Engineering applications of numerical integration in stiffness methods.AIAA J. 4: 2035–2037

    MATH  Google Scholar 

  • Irons B M 1972 An assumed stress version of the Wilson 8-node brick. University of Wales, Computer Report CNME/cr/56

  • Irons B M, Ahmad S 1979Techniques of finite elements (Chichester: Ellis Horwood)

    Google Scholar 

  • Kelen P 1989 Control of spurious nodes in 20-noded isoparametric element.Commun. Appl. Numer. Methods 5: 415–422

    Article  MATH  Google Scholar 

  • Kidger D J 1990 The 14-node brick element family.Finite Elements Anal. Design 6:

  • Kim Y H, Jones R F, Lee S W 1990 Study of 20-node solid element.Commun. Appl. Numer. Methods 6: 197–205

    Article  MATH  Google Scholar 

  • Lee S W 1974 An assumed stress hybrid finite element for three-dimensional elastic structural analysis.Massachusetts Institute of Technology, ASRL-TR-170-3

  • Loikkanen M J, Irons B M 1984 An 8-node brick finite element.Int. J. Numer. Methods. Eng. 20: 523–528

    Article  MATH  Google Scholar 

  • MacNeal R H 1982 Derivation of assumed strain matrices by assumed strain distributions.Nucl. Eng. Design 70: 3–12

    Article  Google Scholar 

  • MacNeal R H, Harder R L 1985 A proposed set of problems to test finite element accuracy.Finite Elements Anal. Design 1: 3–20

    Article  Google Scholar 

  • MacNeal R H 1992 On the limits of finite element perfectibility.Int. J. Numer. Methods. Eng. 35: 1589–1601

    Article  MATH  Google Scholar 

  • Melosh R J 1963 Structural analysis of solids.J. Struct. Div. ASCE 89: 205–223

    Google Scholar 

  • Naganarayana B P 1991Consistency and correctness principles in quadratic displacement type finite elements. Ph D thesis, Dept. Aerospace Eng., Indian Institute of Science, Bangalore

    Google Scholar 

  • Naganarayana B P, Prathap G 1991 Field-consistency analysis of 27-noded hexahedral elements for constrained media elasticity.Finite Elements Anal. Design 9: 149–168

    Article  MATH  Google Scholar 

  • Nguyen V P 1982 Automatic mesh generation with tetrahedron elements.Int. J. Numer. Methods. Eng. 18: 273–289

    Article  MATH  Google Scholar 

  • Oden J T 1983Finite elements — mathematical aspects (Englewood Cliffs, NJ: Prentice-Hall)

    MATH  Google Scholar 

  • Oleson J F 1983 Field redistribution in finite elements — a mathematical alternative to reduced integration.Comput. Struct. 17: 157–159

    Article  Google Scholar 

  • Pammer Z, Szabo L 1981 Stereo decomposition subroutines for three-dimensional plotter programs.Int. J. Numer. Methods. Eng. 17: 1571–1575

    Article  Google Scholar 

  • Park K C 1984 Symbolic fourier analysis procedures forC o finite elements. InInnovative Methods Nonlinear Anal. (Swansea, UK: Pineridge Press) 269–293

    Google Scholar 

  • Pawlak T P, Yunus S M, Cook R D 1991 Solid elements with rotational degrees of freedom. Part II. Tetrahedron elements.Int. J. Numer. Methods. Eng. 31: 593–610

    Article  MATH  Google Scholar 

  • Pawsey S F, Clough R W 1971 Improved numerical integration of thick shell finite elements.Int. J. Numer. Methods. Eng. 3: 575–586

    Article  MATH  Google Scholar 

  • Peano A G 1976 Hierarchics of conforming finite elements for elasticity and plate bending.Comput. Math. Appl. 2: 3–4

    Article  Google Scholar 

  • Pian T H H 1973 Hybrid models. InNumerical methods and computer methods in applied mechnics (eds) S J Fenves, N Perrone, A R Robinson, W C Schnobrich (New York: Academic Press)

    Google Scholar 

  • Pian T H H 1985 Finite elements based on consistently assumed stresses and displacements.Finite Elements Anal. Design 1: 131–140

    Article  MATH  Google Scholar 

  • Pian T H H, Chen D P 1983 On the suppression of zero energy deformation modes.Int. J. Numer. Methods. Eng. 19: 1741–1752

    Article  MATH  Google Scholar 

  • Pian T H H, Tong P 1986 Relations between incompatible displacement model and hybrid stress model.Int. J. Numer. Methods. Eng. 22: 173–181

    Article  MATH  MathSciNet  Google Scholar 

  • Prathap G 1985 AC o continuous 4-noded cylindrical shell element.Comput. Struct. 21: 995–999

    Article  Google Scholar 

  • Prathap G 1992 Recent advances in finite element technology. NAL-UNI Series, National Aerospace Lab., Bangalore

    Google Scholar 

  • Punch E F, Atluri S N 1984a Applications of isoparametric three-dimensional hybrid-stress finite elements with least-order fields.Comput. Struct. 19: 406–430

    Article  Google Scholar 

  • Punch E F, Atluri S N 1984b Development and testing of 2- and 3-d hybrid stress elements.Comput. Methods. Appl. Mech. Eng. 47: 331–356

    Article  MATH  Google Scholar 

  • Rashid Y R 1969; 1970 Three dimensional analysis of elastic solids: I. Analysis procedure; II. The computational problems.Int. J. Solids Struct. 5: 6: 1311–1331; 195–207

    Article  MATH  MathSciNet  Google Scholar 

  • Rashid Y R, Smith P D, Prince N 1969 On further application of finite element method to three-dimensional elastic analysis. InSymposium on high speed computing of elastic structures (eds) W H Rowan, R M Hackett (Nashville, TN: ASCE)

    Google Scholar 

  • Rigby G L, McNeice G M 1972 A strain energy basis for studies of element stiffness matrices.AIAA J. 10: 1490–1493

    Google Scholar 

  • Robinson J 1985Early FEM pioneers (Dorset: Robinson and Associates)

    Google Scholar 

  • Schulz J C 1985 Finite element hourglassing control.Int. J. Numer. Methods. Eng. 21: 1039–1048

    Article  MATH  Google Scholar 

  • Smith I M, Kidger D J 1992 Elastoplastic analysis using the 14-node brick element family.Int. J. Numer. Methods. Eng. 1263–1275

  • Spilker R L 1981 High-order three-dimensional hybrid-stress elements for thick plate analysis.Int. J. Numer. Methods. Eng. 17: 53–69

    Article  MATH  Google Scholar 

  • Spilker R L, Singh S P 1982 Three-dimensional hybrid-stress isoparametric quadratic displacement elements.Int. J. Numer. Methods. Eng. 18: 445–465

    Article  MATH  Google Scholar 

  • Stolarski H, Belytschko T 1981 Membrane locking and reduced integration for curved beam elements.J. Appl. Mech. 49: 172–178

    Article  Google Scholar 

  • Strang G 1972 Variational crimes in the finite element method. InThe mathematical foundations of the finite element method with applications to partial differential equations (ed.) A K Aziz (New York: Academic Press)

    Google Scholar 

  • Strang G, Fix G J 1973An analysis of the finite element method (Englewood Cliffs, NJ: Prentice-Hall)

    MATH  Google Scholar 

  • Stroud A H 1971Approximate calculation of multiple integrals (Englewood-Cliffs, NJ: Prentice-Hall)

    MATH  Google Scholar 

  • Synge J L 1957The hypercircle in mathematical physics (London: Cambridge University Press)

    MATH  Google Scholar 

  • Sze K Y, Chow C L, Chen W 1990 A rational formulation of isoparametric hybrid stress elements.Finite Elements Anal. Design 7: 61–72

    Article  Google Scholar 

  • Sze K Y, Ghali A 1993 Hybrid hexahedral element for solids, plates, shells and beams by selective scaling.Int. J. Numer. Methods. Eng. 36: 1519–1540

    Article  MATH  Google Scholar 

  • Tan H Q, Chang T Y P, Zheng D 1991 On symbolic manipulation and code generation of a hybrid three-dimensional solid element.Eng. Comput. 7: 47–59

    Article  Google Scholar 

  • Tang L, Chen W 1982 The non-conforming finite elements for stress analysis. InProceedings in the International Conference on finite element methods (eds) G He, Y K Cheung (New York: Gordon and Breach)

    Google Scholar 

  • Taylor R L, Beresford P J, Wilson E L 1976 A non-conforming element for stress analysis.Int. J. Numer. Methods. Eng. 10: 1211–1219

    Article  MATH  Google Scholar 

  • Tessler A, Dong S B 1981 On a hierarchy of conforming beam elements.Comput. Struct. 14: 335–344

    Article  Google Scholar 

  • Turner M J, Clough R W, Martin H C, Topp L J 1956 Stiffness and deflection analysis of complex structures.J. Aeronaut. Sci. 23: 805–823

    Google Scholar 

  • Venkatesh D N, Shrinivasa U 1993a Formulation of finite elements which satisfy the Navier equationa priori. Report 93 VAR 5, Dept. Mech. Eng. Indian Institute of Science, Bangalore

    Google Scholar 

  • Venkatesh D N, Shrinivasa U 1993b Solutions to the Navier equation and equivalent Papcovitch-Neuber functions. Report 93 VAR1, Dept. Mech. Eng. Indian Institute of Science, Bangalore

    Google Scholar 

  • Venkatesh D N, Shrinivasa U 1993c Generation of an 8-node brick element using PN functions. Report 93 VAR2, Dept. Mech. Eng. Indian Institute of Science, Bangalore

    Google Scholar 

  • Venkatesh D N, Shrinivasa U 1993d Hexahedral elements using PN functions for beam problems. Report 93 VAR3, Dept. Mech. Eng. Indian Institute of Science, Bangalore

    Google Scholar 

  • Venkatesh D N, Shrinivasa U 1993e Performance study of hexahedral elements using PN functions. Report 93 VAR5, Dept. Mech. Eng. Indian Institute of Science, Bangalore

    Google Scholar 

  • Vlachoutsis S 1990 Explicit integration of three-dimensional degenerated shell elements.Int. J. Numer. Methods. Eng. 29: 861–880

    Article  MATH  Google Scholar 

  • Wachspress E I 1975Rational finite element basis (New York: Academic Press)

    MATH  Google Scholar 

  • Wait R 1971 A finite element for 3-dimensional function approximation.Proc. Conf. Appl. Numer. Anal. Springer-Verlag lecture notes in Mathematics (Berlin, Heidelberg: Springer-Verlag) 228: 348–352

    Google Scholar 

  • Washizu K 1968Variational principles in elasticity and plasticity (London: Pergamon)

    Google Scholar 

  • White D W, Abel J F 1989 Testing of shell finite element accuracy and robustness.Finite Elements Anal. Design 6: 129–151

    Article  Google Scholar 

  • Wilson E L 1973 Incompatible displacement models, InNumerical methods and computer methods in applied mechanics (eds) S J Fenves, N Perrone, A R Robinson, W C Schnobrich (New York: Academic Press)

    Google Scholar 

  • Wilson E L, Ibrahimbegovic A 1990 Use of incompatible displacement modes for the calculation of element stiffnesses or stresses.Finite Elements Anal. Design. 7: 229–241

    Article  Google Scholar 

  • Wilson E L, Taylor R L, Doherty W P, Ghaboussi T 1973 Incompatible displacement models. InNumerical Computational Methods in Structural Mechanics (eds) S J Fenveset al (New York: Academic Press)

    Google Scholar 

  • Yang T Y 1986Finite element structural analysis (Englewood Cliffs, NJ: Prentice-Hall)

    Google Scholar 

  • Yu H S 1990 A rational displacement interpolation function for axisymmetric finite element analysis of nearly incompressible materials.Finite Elements Anal. Design 10: 205–219

    Article  Google Scholar 

  • Yunus S M, Pawlak T P, Cook R D 1991 Solid elements with rotational degrees of freedom: Part I. Hexahedron elements.Int. J. Numer. Methods. Eng. 31: 573–592

    Article  MATH  Google Scholar 

  • Yunus S M, Saigal S, Cook R D 1989 On improved hybrid elements with rotational degrees of freedom.Int. J. Numer. Methods. Eng. 28: 785–800

    Article  Google Scholar 

  • Zienkiewicz O C 1973 Finite elements — the background story. InThe mathematics of finite elements and applications (ed.) J R Whiteman (New York: Academic Press)

    Google Scholar 

  • Zienkiewicz O C 1977The finite element method (New York: McGraw Hill)

    MATH  Google Scholar 

  • Zienkiewicz O C, De J P, Gago S R, Kelly D W 1983 The hierarchical concept in finite element analysis.Comput Struct. 16: 53–65

    Article  MATH  Google Scholar 

  • Zienkiewicz O C, Irons B M, Ergatoudis J, Ahmad S, Scott F C 1969 Isoparametric and associated element families for two and three dimensional analysis. InFinite element methods in stress analysis (eds) I Holland, K Bell (Trondheim, Norway: Tapir)

    Google Scholar 

  • Zienkiewicz O C, Irons B M, Scott F C, Campbell J S 1970 Three dimensional stress analysis. InSymposium on high speed computing of elastic structures 1: 413–432

    Google Scholar 

  • Zienkiewicz O C, Taylor R L 1989The finite element method. Vol. I: Basic formulation and linear problems (New York: McGraw Hill)

    Google Scholar 

  • Zienkiewicz O C, Taylor R L, Too J M 1971 Reduced integration technique in general analysis of plates and shells.Int. J. Numer. Methods. Eng. 3: 275–290

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatesh, D.N., Shrinivasa, U. Solid finite elements through three decades. Sadhana 19, 271–287 (1994). https://doi.org/10.1007/BF02811899

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811899

Keywords

Navigation