Skip to main content
Log in

Deformation substructure and strain-hardening characteristics of metastable Fe−Mn austenites

  • Published:
Metallurgical Transactions Aims and scope Submit manuscript

Abstract

The 500° and 550°C strain-hardening characteristics of manganese austenites based on Fe-14 pct Mn-0.4 pct C with carbide forming elements (Cr, V, Mo), were determined and deformation substructures were examined by transmission electron microscopy. Of the carbide formers investigated, molybdenum is the most effective in enhancing the strain-hardening rate of manganese austenite, followed closely by vanadium. The effect of chromium is relatively small. The effectiveness of carbide formers is independent of the strain-induced precipitation reaction, though this varies greatly in extent. Examination of thin foils revealed widely extended stacking faults which persist after heavy deformation, indicating a low stacking fault energy. It is tentatively suggested that the essential role of molybdenum, vanadium, and chromium is to progresively lower the stacking fault energy of a manganese austenite, and thereafter enhance its strain-hardening rate. The lower stacking fault energy postpones cross-slip and, as a result of stacking fault-dislocation interaction, increases the dislocation density and strain-hardening rate. It is concluded that the precipitates play only a minor role in strain-hardening manganese austenites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Raymond, W. W. Gerberich, and C. F. Martm:J. Iron Steel Inst., 1965, vol. 203, p. 933.

    CAS  Google Scholar 

  2. G. Thomas, D. Schmatz, and W. W. Gerberich:High Strength Materials, p. 251, John Wiley & Sons, Inc., New York, 1965.

    Google Scholar 

  3. A. J. McEvily, Jr., R. H. Bush, F. W. Schaller, and D. J. Schmatz:Trans. ASM, 1963, vol. 56, p. 753.

    CAS  Google Scholar 

  4. W. W. Gerberich, C. F. Martin, and V. F. Zackey,Trans. ASM, 1965, vol. 58, p. 85.

    CAS  Google Scholar 

  5. W. E. Duckworth and P. R. Taylor: Iron Steel Inst., Special Report No. 86, p. 61, 1964.

    Google Scholar 

  6. W. E. Duckworth, P. R. Taylor, and D. A. Leak:J. Iron Steel Inst., 1964, vol. 202, p. 135.

    CAS  Google Scholar 

  7. W. E. Duckworth: Discussion, Ref. 2,, p. 324.

    Google Scholar 

  8. C. H. White and R. W. K. Honeycombe:J. Iron Steel Inst., 1962 vol. 200, p. 457.

    Google Scholar 

  9. M. C. Chaturvedi, R. W. K. Honeycombe, and D. H. Warrington:J. Iron Steel Inst., 1968, vol. 208, p. 1236.

    Google Scholar 

  10. O. Jahari and G. Thomas:Trans. ASM, 1965, vol. 58, p. 563.

    Google Scholar 

  11. H. J. Harding and R. W. K. Honeycombe:J. Iron Steel Inst., 1966, vol. 204, p. 259.

    Google Scholar 

  12. J. M. Silcock:Phil. Mag., 1964, vol. 10, p. 361.

    Article  ADS  CAS  Google Scholar 

  13. D. Dulieu and J. Nutting: Iron Steel Inst., Special Report No. 86, p. 140, 1964.

    Google Scholar 

  14. M. J. Marcinkowski and D. S. Miller:Phil. Mag., 1961, vol. 6, p. 871.

    Article  ADS  CAS  Google Scholar 

  15. A. V. A. Saarinen and H. M. Miekk-oja:Metal Sci. J., 1967, vol. 1, p. 145.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

DJ. DROBNJAK, formerly Postdoctoral Fellow, Department of Engineering Materials, University of Windsor, Windsor, Ontario, Canada

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drobnjak, D., Parr, J.G. Deformation substructure and strain-hardening characteristics of metastable Fe−Mn austenites. Metall Trans 1, 759–765 (1970). https://doi.org/10.1007/BF02811751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811751

Keywords

Navigation