Skip to main content
Log in

The effect of pressure modulation on the flow of gas through a solid membrane: Surface inhibition and internal traps

  • Transport Phenomena
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

By permeation of a gaseous diffusant, pressure modulations may be transmitted through a solid foil from one experimental chamber to another. The resulting attenuation and phase lag of the transmitted modulation depend on all processes capable of influencing the diffusant flux. It is shown that diffusants which take part in surface reactions of finite rate or are subject to reversible trapping within the solid have a frequency response characteristic of the process involved. Mathematical separation of the bulk and surface processes is effected by a treatment which uses a separate matrix to describe each process and so is readily applied to the problem of multiply controlled flows. The analysis suggests that experimental separation of processes is possible even when both surface reaction and internal trapping have a part in determining rate of flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Richardson:Phil Mag., 1904, vol. 7, p. 266.

    CAS  Google Scholar 

  2. J. S. Wang:Proc. Cam. Phil. Soc., 1936, vol. 32, p. 657.

    Article  CAS  Google Scholar 

  3. H. A. Daynes:Proc. Roy. Soc., 1920, vol. A97, p. 286.

    Article  Google Scholar 

  4. R. M. Barrer:Trans. Farad. Soc., 1939, vol. 35, p. 628.

    Article  CAS  Google Scholar 

  5. E. Fromm, H. Uchida, and B. Chellari:Ber. Bunsenges Phys. Chem., 1983, vol. 87, p. 410.

    CAS  Google Scholar 

  6. A. D. LeClaire:Diffusion and Defect Data, 1983, vol. 33, p. 1.

    CAS  Google Scholar 

  7. M. Iino:Acta Metall., 1982, vol. 30, p. 367.

    Article  CAS  Google Scholar 

  8. K. K. Shah, H. G. Nelson, D. L. Johson and F. M. Hamaker:Metall. Trans. A, 1975, vol. 6A, p. 373.

    CAS  Google Scholar 

  9. J. Volkl and G. Alefeld:Hydrogen in Metals, G. Alefeld and J. Volkl, eds., Springer Verlag, New York, NY, 1978, vol. 1, p. 321.

    Google Scholar 

  10. N. Boes and H. Zuchner:J. Less-Common Metals, 1976, vol. 49, p. 223.

    Article  CAS  Google Scholar 

  11. H. M. Morrison and D. A. Blackburn, and K. M. Chui:J. Nucl. Mater., 1978, vol. 69 & 70, p. 598.

    Google Scholar 

  12. W. M. Robertson: Proc. 2nd Int. Conf.,Environmental Degradation of Engineering Materials in Hydrogen, Blacksburg, VA, Sept. 1981, M. R. Louthan, R. P. McNeil, and R. D. Sisson, eds.

  13. Y. Hayashi and A. Tahara:J. Jpn. Inst. Met., 1983, vol. 47, p. 180.

    Google Scholar 

  14. D. L. Cummings, R. L. Reuben, and D. A. Blackburn,:Metall. Trans. A, 1984, vol. 15A, p. 639.

    CAS  Google Scholar 

  15. A. McNabb and P. K. Foster:Trans. Met. Soc. AIME, 1963, vol. 227, p. 618.

    CAS  Google Scholar 

  16. R. A. Oriani:Acta Metall., 1970, vol. 18, p. 147.

    Article  CAS  Google Scholar 

  17. F. C. Tompkins:Chemisorption of Gases on Metals, Academic Press, London, 1978.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cummings, D.L., Blackburn, D.A. The effect of pressure modulation on the flow of gas through a solid membrane: Surface inhibition and internal traps. Metall Trans A 16, 1013–1024 (1985). https://doi.org/10.1007/BF02811671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811671

Keywords

Navigation