Skip to main content
Log in

Combined reactions

  • 1979 Institute of Metals Lecture The Metallurgical Society of AIME
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The term “combined reaction” is used for solid state reactions which are composed of more than one of the following reactions:T—change of crystal structure (transformation),D—local change in chemical composition (decomposition)R—healing out of defects (recovery, recrystallization)C—crystallization of an amorphous solid.

Many metals and alloys can be brought into a conditions in which two or more of these reactions are due to occur in order to approach the equilibrium. This starting structure is frequently far away from the thermodynamical equilibrium, and dissipative-, defect-nucleated and other nonequilibrium structures form as the first stage of combined reactions. Some features of combined reactions are qualitatively different from the elementary reactions. One example is the inhibition of recrystallization with increasing defect density.

A systematic concept of combined reactions allows to understand their mechanisms and to predict microstructures, which can be produced as a function of temperature of annealingT, time of annealingt, chemical compositionx, and concentration of defectsp.

The principle three modes of mechanisms for reactions with two elements participating are (example:D andR):RD = sequential reaction,D followsR. (R+D)d=simultaneous and discontinuous reaction,i.e. autocatalytic nucleation, growth and annihilation of defects in a reaction front. (R+D) c =simultaneous and continuous reaction,i.e. individual nucleation and growth of new phases and/or subgrains.

There are three families resulting from combinations of the first three elementary reactions:DR, DT, TR. The variety of special combined reactions is rather large, if all three elementsT, D, R are combined. This corresponds to eutectoid reactions in a highly defect matrix. Experimental results obtained with different Al-, Cu-, Fe-, and Ni-based alloys will be used to illustrate a survey of the combined reactions and the microstructures which can be produced (as a function ofT, t, x, p). The combined reactions form the base for the understanding of microstructures found after many hot-forming operations, as well as other thermomechanical treatments of metallic materials.

Finally it is demonstrated that the principles derived for crystalline solids apply in a similar way to the crystallization behavior of amorphous alloys. The different types of reactions will help to predict the thermal stability of these new materials and the microstructures which can be obtained by their crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Recrystallization in the Control of Microstructures,Proc. ISI-IOM Conf., London, 1973.

  2. P. Glansdorff and I. Prigogine:Structure, Stability, and Fluctuation, p. 247, Wiley-Interscience, London, 1977.

    Google Scholar 

  3. E. L. Koschmieder:Advan. Chem. Phys., 1974, vol. 26, p. 177.

    Article  Google Scholar 

  4. K. Stierstadt:Phys. Blätter, 1978, vol. 34, p. 297.

    Google Scholar 

  5. Recrystallization of Metallic Materials, F. Haessner, ed., p. 11, Riederer, Stuttgart, 1978.

    Google Scholar 

  6. H. Gleiter:Phys. Status Solidi, (b), 1971, vol. 45, p. 9.

    Article  CAS  Google Scholar 

  7. H. Gleiter and B. Chalmers:High Angle Boundaries, Pergamon Press, Oxford, 1972.

    Google Scholar 

  8. P. Pumphrey and H. Gleiter:Phil. Mag., 1975, vol. 32, p. 881.

    Article  CAS  Google Scholar 

  9. G. Kunze and P. Wincierz:Acta Met., 1964, vol. 12, p. 685.

    Article  Google Scholar 

  10. K. Smidoda, W. Gottschalk, and H. Gleiter:Acta Met., 1978, vol. 26, p. 1833.

    Article  CAS  Google Scholar 

  11. P. Cotterill and P. R. Mould:Recrystallization and Grain Growth in Metals, Surrey University Press, London, 1969.

    Google Scholar 

  12. The Mechanism of Phase Transformation in Crystalline Solids, Institute of Metals, Monograph 33, London, 1969.

  13. E. Hornbogen:Met. Trans. 1972, vol. 3, p. 2717.

    Article  CAS  Google Scholar 

  14. Nucleation, Zettlemoyer, ed., p. 309, M. Dekker, New York, 1969.

    Google Scholar 

  15. G. Bäro, and H. Gleiter:Acta Met., 1974, vol. 22, p. 141.

    Article  Google Scholar 

  16. K. R. Kinsman and S. Shinozaki:Scr. Met., 1978, vol. 12, p. 517.

    Article  CAS  Google Scholar 

  17. K. Holm and E. Hornbogen:J. Mater. Sci. 1970, vol. 5, p. 665.

    Article  Google Scholar 

  18. E. Hornbogen, E. Minuth, and E. Blank:Arch. Eistenhuettenw., 1970, vol. 41, p. 883.

    CAS  Google Scholar 

  19. H. Kreye, E. Hornbogen, and F. Haessner:Phys. Status Solidi (a), 1970, vol. 1, p. 97.

    Article  CAS  Google Scholar 

  20. E. Hornbogen and H. Kreye:Z. Metallk., 1966, vol. 57, p. 122.

    Google Scholar 

  21. S. Saji and E. Hornbogen:Z. Metallk., 1978, vol. 69, p. 741.

    CAS  Google Scholar 

  22. E. Hornbogen and H. Kreye:Textures in Research and Praxis, p. 274. Springer, Berlin, 1969.

    Google Scholar 

  23. S. Horiuchi and I. Gokyu:Textures in Research and Praxis, p. 312, Springer, Berlin, 1969.

    Google Scholar 

  24. J. Petermann and E. Hornbogen:Z. Metallk., 1968, vol. 59, p. 314.

    Google Scholar 

  25. D. Turnbull and H. N. Treaftis:Acta Met., 1955, vol. 3. p. 43 and 55.

    Article  CAS  Google Scholar 

  26. H. Böhm:Z. Metallk., 1961, vol. 52, p. 564.

    Google Scholar 

  27. E. Hornbogen:Trans. TMS-AIME, 1963, vol. 19, p. 1087.

    Google Scholar 

  28. K. Lücke and H. P. Stüwe:Acta Met. 1971, vol. 19, p. 1087.

    Article  Google Scholar 

  29. K. Mäder and E. Hornbogen:Z. Metallk. 1969, vol. 60, p. 475.

    Google Scholar 

  30. P. Aubrun and P. Roquet:Mem. Sci. Rev. Met., 1973, vol. 70, p. 261.

    CAS  Google Scholar 

  31. P. Aubrun and P. Roquet:Mem. Sci. Rev. Met., 1974, vol. 71, p. 1.

    CAS  Google Scholar 

  32. P. Aubrun and P. Roquet:Mem. Sci. Rev. Met., 1975, vol. 72, p. 11.

    Google Scholar 

  33. D. McLean and D. J. Dingley:Acta Met., 1967, vol. 15, p. 885.

    Article  Google Scholar 

  34. D. F. Stein:Proc. ICSMA 3, p. 58, Cambridge, 1973.

    Google Scholar 

  35. C. Zener and C. S. Smith:Trans. AIME, 1948, vol. 175, p. 15.

    Google Scholar 

  36. M. Ashby and R. M. A. Centamore:Acta Met., 1968, vol. 16, p. 1081.

    Article  CAS  Google Scholar 

  37. E. Hornbogen:Metall, 1973, vol. 27, p. 270.

    Google Scholar 

  38. C. Wagner:Z. Elektrochem., 1961, vol. 95, p. 581.

    Google Scholar 

  39. A. J. Ardell and R. B. Nicholson:Acta Met., 1966, vol. 14, p. 1295.

    Article  CAS  Google Scholar 

  40. E. Hornbogen and M. Roth:Z. Metallk., 1967, vol. 58, p. 842.

    CAS  Google Scholar 

  41. H. Gleiter:J. Less-Common Metals, 1972, vol. 28, p. 29.

    Article  Google Scholar 

  42. R. W. K. Honeycombe:Met. Trans. A, 1976, vol. 7A, p. 923.

    Google Scholar 

  43. M. H. Ainsley, G. J. Cocks, and D. P. Miller:Metal Sci., 1979, vol. 13, p. 20.

    Article  CAS  Google Scholar 

  44. H. Kreye and E. Hornbogen:J. Mater. Sci., 1970, vol. 5, p. 89.

    Article  CAS  Google Scholar 

  45. H. Kreye and U. Brenner:J. Mater. Sci. 1974, vol. 9, p. 1775.

    Article  CAS  Google Scholar 

  46. U. Köster:Metal Sci., 1974, vol. 8, p. 151.

    Google Scholar 

  47. S. Saji, K. Asno, and S. Hori:J. Jpn. Inst. Metals, 1974, vol. 38, p. 591.

    CAS  Google Scholar 

  48. J. Dutkiewicz:Met. Trans. A, 1977, vol. 8A, p. 751.

    Article  CAS  Google Scholar 

  49. J. Dutkiewicz:Met. Technol., 1978, vol. 5, p. 333.

    CAS  Google Scholar 

  50. E. Hornbogen:Z. Metallk., 1965, vol. 56, p. 133.

    CAS  Google Scholar 

  51. E. Hornbogen:Fortschr. Miner., 1973, vol. 50, p. 270.

    CAS  Google Scholar 

  52. C. Brock, E. Hornbogen, P. Stratmann, and H. Tommek:Arch. Eisenhuettenw., 1976, vol. 47, p. 513.

    CAS  Google Scholar 

  53. H. Kreye:Z. Metallk., 1970, vol. 61, p. 108.

    CAS  Google Scholar 

  54. W. A. Johnson and R. F. Mehl:Trans. AIME, 1939, vol. 135, p. 416.

    Google Scholar 

  55. R. F. Mehl:Iron Age, 1941, vol. 148, p. 49.

    Google Scholar 

  56. R. W. Parcel and R. F. Mehl:Trans. AIME, 1952, vol. 194, p. 771;J. Metals, July 1952, p. 771.

    Google Scholar 

  57. R. F. Mehl:Rev. Met., 1957, vol. 54, p. 245.

    Google Scholar 

  58. C. Zener:Trans. AIME, 1946, vol. 167, p. 550.

    Google Scholar 

  59. J. W. Cahn:Acta Met., 1959, vol. 7, p. 18.

    Article  CAS  Google Scholar 

  60. M. Hillert:Met. Trans., 1972, vol. 3, p. 2729.

    Article  CAS  Google Scholar 

  61. M. P. Puls and J. S. Kirkaldy:Met. Trans., 1972, vol. 3, p. 2777.

    Article  CAS  Google Scholar 

  62. L. Onsager:Phys. Rev., 1931, vol. 37, p. 405.

    Article  CAS  Google Scholar 

  63. Weissenberg and E. Hornbogen.Arch. Eisenhuettenw. 1980, vol. 51.

  64. E. Gauthier-Alby: Thèse, Institut National Polytechnique de Lorraine, Nancy, 1978.

  65. B. Walser, E. S. Kayali, and O. D. Sherby:Proc. ICSMA 4, p. 456, Nancy, 1976.

  66. O. D. Sherby, B. Walser, C. M. Young, and E. M. Cady:Scr. Met., 1975, vol. 9, p. 569.

    Article  CAS  Google Scholar 

  67. J. D. Walker and R. W. Honeycombe:Metal Sci., 1978, vol. 12, p. 445.

    Article  CAS  Google Scholar 

  68. C. M. Wayman:Introduction to the Crystallography of Martensitic Transformations, Macmillan, New York, 1964.

    Google Scholar 

  69. Martensite, E. Perry, ed. Longman, London, 1970.

    Google Scholar 

  70. E. Hornbogen and W. A. Meyer:Z. Metallk., 1967, vol. 58, p. 378.

    Google Scholar 

  71. E. Hornbegen and W. A. Meyer:Arch. Eisenhuettenw., 1968, vol 39, p. 73.

    Google Scholar 

  72. E. Hornbogen:Arch. Eisenhuettenw., 1972, vol. 43, p. 307.

    CAS  Google Scholar 

  73. C. Kamma and E. Hornbogen:J. Mater. Sci., 1976, vol. 11, p. 2340, and unpublished results.

    Article  CAS  Google Scholar 

  74. E. Minuth and E. Hornbogen:Pract. Met., 1974, vol. 11, p. 650.

    CAS  Google Scholar 

  75. E. Hornbogen:J. Mater. Sci., 1977, vol. 12, p. 1565.

    Article  CAS  Google Scholar 

  76. E. Hornbogen:Pract. Met., 1968, vol. 5, p. 51.

    CAS  Google Scholar 

  77. E. Hornbogen:Z. Metallk., 1973, vol. 64, p. 132.

    Google Scholar 

  78. J. D. Livingston:J. Cryst. Growth. 1974, vols. 24/25, p. 94.

    Article  Google Scholar 

  79. Ya. B. Gurevich:Sov. Phys. Dokl., 1972, vol. 16, p. 992.

    Google Scholar 

  80. H. Ahlborn, E. Hornbogen, and U. Köster:J. Mater. Sci., 1969, vol. 4, p. 944.

    Article  CAS  Google Scholar 

  81. Fundamental Aspects of Structural Alloy Design, R. J. Jaffee, ed., p. 389. Plenum Press, New York, 1977.

    Google Scholar 

  82. J. Becker, E. Hornbogen, and P. Stratmann: AIME Symposium Dual Phase Steels, New Orleans, 1979.

  83. M. Piecuch, G. Marchal, Ph. Mangin, B. Rodmacq, and Chr. Janot:J. Phys., 1977, vol. 38, pp. C7–369.

    Google Scholar 

  84. E. Hornbogen:J. Mater. Sci., 1978, vol. 13, p. 666.

    Article  CAS  Google Scholar 

  85. G. Marchal, Ph. Mangin, and Chr. Janot:Phil. Mag., 1975, vol. 82, p. 1007.

    Article  Google Scholar 

  86. I. Schraidt and E. Hornbogen:Z. Metallk., 1978, vol. 69, p. 221.

    Google Scholar 

  87. E. Hornbogen and I. Schmidt: Proc. Int. Conf. Rapidly Quenched Metals, Brighton, 1978, p. 261.

  88. U. Herold and U. Köster:Z. Metallk., 1978, vol. 69, p. 326.

    CAS  Google Scholar 

  89. U. Köster: Forschungsbericht NRW No. 2604, Westdeutscher Verlag, Opladen, 1976.

  90. C. Rossard:Proc. ICSMA, 3, p. 175, Cambridge, England, 1973.

    Google Scholar 

  91. U. Lotter and L. Meyer:Met. Technol., 1977, vol. 4, p. 27.

    CAS  Google Scholar 

  92. T. H. Alden: Ref. 81, p. 411.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The Institute of Metals Lecture was established in 1921, at which time the Institute of Metals Division was the only professional Division within the American Institute of Mining and Metallurgical Engineers. It has been given annually since 1922 by distinguished men from this country and abroad. Beginning in 1973 and thereafter, the person selected to deliver the lecture will be known as the “Institute of Metals Division Lecture and R. F. Mehl Medalist” for that year.

At the time of the lecture he was visiting professor at the Ecole des Mines in Nancy, France. He was a student of physical metallurgy at the Universities of Clausthal and Stuttgart from 1950 to 1954 and was a Research Assistant at Clausthal from 1955 to 1957, receiving his Ph.D. there in 1956.

Dr. Hornborgen served as a Research Engineer with United States Steel in Monroeville, Pennsylvania from 1958 to 1963. He then worked as a scientist at the Max-Planck-Institute for Metals Research in Stuttgart and was a lecturer at the university there. In 1965 he became Professor of Metals Physics at the University of Gottingen and in 1968 became Professor of Materials Science and Engineering at Ruhr-University Bochum.

The author of approximately 150 papers, Dr. Hornbogen received the Grossman Award from the American Society for Metals in 1962 and 1963, the Masing Preis (young scientist’s award) from the German Metallurgical Society in 1965, and was elected a Fellow of ASM in 1976.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbogen, E. Combined reactions. Metall Trans A 10, 947–972 (1979). https://doi.org/10.1007/BF02811643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02811643

Navigation