Sadhana

, Volume 17, Issue 3–4, pp 391–409

Integrated optics — technology and applications

  • A Selvarajan
Emerging Optoelectronic Technologies
  • 52 Downloads

Abstract

The emergence of optoelectronics and photonics as viable alternatives to electronics in many key areas of engineering relevance is indeed significant. This paper presents a tutorial review of integrated optics — a technologically important development in photonics. Materials, processes, device technology and applications are highlighted.

Keywords

Integrated optics photonic circuits technology applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alferness C 1982 Waveguide electrooptic modulators.IEEE Trans. Microwave Theory Tech. 30: 1121–1137CrossRefGoogle Scholar
  2. Assanto G 1990 All optical nonlinear integrated devices.J. Mod. Opt. 37: 855–873CrossRefGoogle Scholar
  3. Barnoski M K, Chen B, Joseph T R, Lee J Y, Ramer O G 1979 Integrated optic spectrum analyser.IEEE Trans. Circuits Syst. 26: 1113–1124CrossRefGoogle Scholar
  4. Brabander G N, Boyd J T, Jackson H E 1991 Single polarization optical waveguide on silicon.IEEE J. Quantum Electron. 27: 575–579CrossRefGoogle Scholar
  5. Burns W K, Giallorenzi T G, Moeller R P, West E J 1978 Interferometric waveguide modulator with polarization independent operation.Appl. Phys. Lett. 33: 944–947CrossRefGoogle Scholar
  6. Burns W K, Klein P H, West J, Plow L E 1979 Ti diffusion in Ti: LiNbO3 planar and channel optical waveguides.J. Appl. Phys. 50: 6175–6182CrossRefGoogle Scholar
  7. Deri R J, Kapon E 1991 Low loss III–V semiconductor optical waveguides.IEEE J. Quantum Electron. 27: 626–640CrossRefGoogle Scholar
  8. Findalky T, Chen B 1984 Single mode transmission selective integrated optical polarizers in LiNbO3.Electron. Lett. 20: 128–129CrossRefGoogle Scholar
  9. Frenette N J P, Cartledge J C 1988 Using longitudinal variations in branching angle to optimise power division or mode splitting properties of planar Y branch waveguides.IEEE J. Quantum Electron. 4: 2491–2499CrossRefGoogle Scholar
  10. Ghatak A K, Thyagarajan K 1989 inOptical electronics (Cambridge: University Press) chap. 14Google Scholar
  11. Honkanen S, Tervonen A 1988 Experimental analysis of Ag+ - Na+ exchange in glass with silver film ion sources for planar waveguide techniques.J. Appl. Phys. 63: 634–639CrossRefGoogle Scholar
  12. Hutcheson L D (ed.) 1987Integrated optical circuits and components: Design and applications (New York: Marcel Dekker)Google Scholar
  13. Ishihara S (ed.) 1990Optical computing in Japan (Tokyo: Nova Science)Google Scholar
  14. Kogelnik H 1975 inIntegrated optics (ed.) T Tamir (Berlin: Springer-Verlag) chap. 2Google Scholar
  15. Loni A, Hay G, De La Rue R M, Winfield J M 1989 Proton exchanged LiNbO3 waveguides.J. Lightwave Technol. 7: 911–919CrossRefGoogle Scholar
  16. Miller S E 1969 Integrated optics: an introduction.Bell Syst. Tech. J. 48: 2059–2068Google Scholar
  17. Nishihara H, Haruna M, Suhara T 1987Optical integrated circuits (New York: McGraw-Hill)Google Scholar
  18. Ramaswamy R V and Srivastava R 1988 Ion exchanged glass waveguides.J. Lightwave Technol. 6: 984–1002CrossRefGoogle Scholar
  19. Satyanarayana M V, Srinivas T, Selvarajan A 1992 Electrostatic field analysis of electrooptic devices.J. Electromag. Waves Appl. 6: 143–155CrossRefGoogle Scholar
  20. Selvarajan A 1986 Computer simulation and experimental studies on fibre optic boradcase system, Project report, IISc-ISRO/STC/15K, Indian Institute of Science, BangaloreGoogle Scholar
  21. Selvarajan A, Midwinter J E 1989 Photonic switches and switch arrays on LiNbO3.Opt. Quantum Electron. 21: 1–15CrossRefGoogle Scholar
  22. Selvarajan A, Shankar J, Krishna T R 1988 Design of a 4 × 4 switch and a phase modulator, Technical Report, ITI-IISc Project on photonic circuits, Indian Institute of Science, BangaloreGoogle Scholar
  23. Shani Y, Henry C H, Kistler R C, Kazaniniv R F, Orlowsky K J 1991 Integrated optic adiabatic devices on silicon.IEEE J. Quantum Electron. 27: 556–566CrossRefGoogle Scholar
  24. Sharma A, Misra P K, Ghatak A K 1988 Single mode optical waveguides and directional couplers with rectangular cross section: A simple and accurate method of analysis.J. Lightwave Technol. 6: 1119–1125CrossRefGoogle Scholar
  25. Shiva Kumar, Srinivas T, Selvarajan A 1990 Beam propagation method and its applications to integrated optic structures and optical fibres.Pramana — J. Phys. 34: 347–358Google Scholar
  26. Subrat Kar, Selvarajan A 1990 Some novel photonic guided-wave space-switching architectures.J. Inst. Electron. Telecommun. Eng. 36: 513–519Google Scholar
  27. Takahashi H, Ohmori Y, Kawachi M 1991 Design and fabrication of silica based integrated optic 1 × 128 power splitter.Electron. Lett. 27: 2131–2132CrossRefGoogle Scholar
  28. Takato N, Jingaji K, Yasu M, Toba H, Kawachi M 1988 Silica based single mode waveguides on silicon and their application to guided wave optical interferometers.J. Lightwave Technol. 6: 1003–1010CrossRefGoogle Scholar
  29. Takono T, Hamasaki J 1972 Propagating modes of a metal clad dielectric slab waveguide for integrated optics.IEEE J. Quantum Electron. 8: 206–212CrossRefGoogle Scholar
  30. Tsai C S 1988 Integrated optical device modules in LiNbO3 for computing and signal processing.J. Mod. Opt. 33: 965–977CrossRefGoogle Scholar
  31. Van Tomme E, Van Daele P P, Baets R G, Lagasse P E 1991 Integrated optic devices based on nonlinear optical polymers.IEEE J. Quantum Electron. 27: 778–787CrossRefGoogle Scholar
  32. Zang D Y, Tsai C S 1985 Single modeWG microlens and microlens array fabrication in LiNbO3 usingTIPE technique.Appl. Phys. Lett. 46: 703–705CrossRefGoogle Scholar

Copyright information

© the Indian Academy of Sciences 1992

Authors and Affiliations

  • A Selvarajan
    • 1
  1. 1.Department of Electrical Communication EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations