Skip to main content
Log in

Density and unique decomposition theorems for the lattice of cellular classes

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

A classC of pointed spaces is called a cellular class if it is closed under weak equivalences, arbitrary wedges and pointed homotopy pushouts. The smallest cellular class containingX is denoted byC(X), and a partial order relation ≪ is defined by:XY ifY εC(X). In this text we investigate the sub partial order sets generated respectively by simply connected finite CW-complexes and by rational spaces. For rational spaces we prove a unique decomposition theorem, a density theorem and the existence of infinitely many non-comparable elements. We then prove the density theorem for a generic class of finite CW-complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. J. Baues,Rationale Homotopietypen, Manuscripta Mathematica20 (1977), 119–131.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. K. Bousfield,Localization of spaces with respect to homology, Topology14 (1975), 133–150.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. Chachólski,Closed classes, inProceedings of the Conference on Algebraic Topology, Barcelona (1994), Progress in Mathematics136, Birkhauser, Boston, 1996, pp. 95–118.

    Google Scholar 

  4. W. Chachólski,On the functors CW A and P A , Duke Mathematical Journal84 (1996), 599–631.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Chachólski, P. E. Parent and D. Stanley,Cellular generators, Proceedings of the American Mathematical Society, to appear.

  6. W. Chachólski, P. E. Parent and D. Stanley,Cellular classes: lifting degeneracies within a Bousfield class, in preparation.

  7. W. Chachólski, P. E. Parent and D. Stanley,Building and a partial order isomorphic to [0, 1], Private communication, January 2001.

  8. E. Dror Farjoun,Cellular Spaces, Null Spaces and Homotopy Localization, Lecture Notes in Mathematics1622, Springer-Verlag, Berlin, 1996.

    Google Scholar 

  9. Y. Flix, S. Halperin, C. Jacobson, C. Löfvall and J.-C. Thomas,The radical of the homotopy Lie algebra, American Journal of Mathematics110 (1988), 301–322.

    Article  MathSciNet  Google Scholar 

  10. Y. Felix, S. Halperin and J.-C. Thomas,Rational Homotopy Theory, Graduate Texts in Mathematics 205, Springer-Verlag, Berlin, 2000.

    Google Scholar 

  11. S. Halperin,Finiteness in the minimal models of Sullivan, Transactions of the American Mathematical Society230 (1977), 173–199.

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Halperin and J.-M. Lemaire,Suites inertes dans les algèbres de Lie graduées, Mathematica Scandinavica61 (1987), 39–67.

    MATH  MathSciNet  Google Scholar 

  13. S. Halperin and J. Stasheff,Obstructions to homotopy equivalences, Advances in Mathematics32 (1979), 233–279.

    Article  MATH  MathSciNet  Google Scholar 

  14. K. Hess,The rational homotopy algebra and cellular type, preprint, 2000.

  15. K. Hess and P.-E. Parent,Emergence of the Witt group in the cellular lattice of rational spaces, Transactions of the American Mathematical Society354 (2002), 4571–4583.

    Article  MATH  MathSciNet  Google Scholar 

  16. M. J. Hopkins and J. H. Smith,Nilpotency and stable homotopy II, Annals of Mathematics148 (1998), 1–49.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. E. Humphreys,Linear Algebraic Groups, Graduate Texts in Mathematics 21, Springer-Verlag, Berlin, 1975.

    MATH  Google Scholar 

  18. I. James,On category in the senes of Lusternik-Schnirelmann, Topology17 (1978), 331–348.

    Article  MATH  MathSciNet  Google Scholar 

  19. I. Niven, H. S. Zuckerman and H. L. Montgomery,An Introduction to the Theory of Numbers, 5th edition, John Wiley and Sons Inc., New York, 1991.

    Google Scholar 

  20. D. Quillen,Rational homotopy theory, Annals of Mathematics9 (1969), 205–295.

    Article  MathSciNet  Google Scholar 

  21. D. Sullivan,Infinitesimal computations in topology, Publications Mathématiques de l’Institut des Hautes Études Scientifiques47 (1977), 269–331.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Tanré,Homotopie rationnelle, Modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics1025, Springer-Verlag, Berlin, 1983.

    Google Scholar 

  23. G. W. Whitehead,Elements of Homotopy Theory, Graduate Texts in Mathematics 61, Springer-Verlag, Berlin, 1978.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Felix.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felix, Y., Parent, PE. Density and unique decomposition theorems for the lattice of cellular classes. Isr. J. Math. 136, 317–351 (2003). https://doi.org/10.1007/BF02807204

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02807204

Keywords

Navigation