Skip to main content
Log in

Noetherianity of the space of irreducible representations

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

LetR be an associative ring with identity. We study an elementary generalization of the classical Zariski topology, applied to the set of isomorphism classes of simple leftR-modules (or, more generally, simple objects in a complete abelian category). Under this topology the points are closed, and whenR is left noetherian the corresponding topological space is noetherian. IfR is commutative (or PI, or FBN) the corresponding topological space is naturally homeomorphic to the maximal spectrum, equipped with the Zariski topology. WhenR is the first Weyl algebra (in characteristic zero) we obtain a one-dimensional irreducible noetherian topological space. Comparisons with topologies induced from those on A. L. Rosenberg’s spectra are briefly noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gabriel,Des Catégories Abéliennes, Bulletin de la Société Mathématique de France90 (1962), 323–448.

    MATH  MathSciNet  Google Scholar 

  2. K. R. Goodearl and R. B. Warfield, Jr.,An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts, Vol. 16, Cambridge University Press, Cambridge, 1989.

    MATH  Google Scholar 

  3. H. Krause,The spectrum of a module category, Memoris of the American Mathematical Society149 (2001), 1–125.

    MathSciNet  Google Scholar 

  4. H. Krause and M. Saorín,On minimal approximations of modules, inTrends in the Representation Theory of Finite-Dimensional Algebras (Seattle, WA, 1997), Contemporary Mathematics, Vol. 229, American Mathematical Society, Providence, 1998, pp. 227–236.

    Google Scholar 

  5. J. C. McConnell and J. C. Robson,Homomorphisms and extensions of modules over certain differential polynomial rings, Journal of Algebra26 (1973), 319–342.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. C. McConnell and J. C. Robson,Noncommutative Noetherian Rings, Wiley-Interscience, Chichester, 1987.

    MATH  Google Scholar 

  7. A. L. Rosenberg,Noncommutative algebraic geometry and representations of quantized algebras, Mathematics and its Applications, Vol. 330, Kluwer, Dordrecht, 1995.

    MATH  Google Scholar 

  8. S. P. Smith,Subspaces of non-commutative spaces, preprint, University of Washington.

  9. S. P. Smith and J. J. Zhang,Curves on quasi-schemes, Algebras and Representation Theory1 (1998), 311–351.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. T. Stafford and M. Van den Bergh,Noncommutative curves and noncommutative surfaces, Bulletin of the American Mathematical Society38 (2001), 171–216.

    Article  MATH  Google Scholar 

  11. B. Stenström,Rings of Quotients, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Vol. 217, Springer-Verlag, New York, 1975.

    MATH  Google Scholar 

  12. M. Van den Bergh,Blowing up of non-commutative smooth surfaces, Memoirs of the American Mathematical Society154 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward S. Letzter.

Additional information

The author’s research was supported in part by NSF grants DMS-9970413 and DMS-0196236.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letzter, E.S. Noetherianity of the space of irreducible representations. Isr. J. Math. 136, 307–316 (2003). https://doi.org/10.1007/BF02807203

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02807203

Keywords

Navigation