Advertisement

Estuaries

, Volume 25, Issue 4, pp 694–703 | Cite as

Element ratios and aquatic food webs

  • R. E. Turner
Article

Abstract

Organic matter is the result of concentrating a few non-metals that are relatively rare in the earth’s crust. Most of these essential elements are in a rough proportionality within phylogenetic groupings. Life is thus working against a concentration gradient to extract or accumulate these elements, and this metabolic work is accomplished in interrelated and often subtle ways for many other elements. The physiological requirement to sustain these elemental ratios (commonly discussed in terms of the N∶P ratios, but also C∶N, C∶P, and Si∶N ratios) constrains organization at the cellular, organism, and community level. Humans, as geochemical engineers, significantly influence the spatial and temporal distribution of elements and, consequently, their ratios. Examples of these influences include the changing dissolved Si: nitrate and the dissolved nitrate: phosphate atomic ratios of water entering coastal waters in many areas of the world. Human society may find that some desirable or dependent ecosystem interactions are compromised, rather than enhanced, as we alter these elemental ratios. Human-modulated changes in nutrient ratios that cause an apparent increase in harmful algal blooms may compromise the diatom-zooplankton-fish food web. It will be useful to improve our understanding of aquatic ecosystems and for management purposes if the assiduous attention on one element (e.g., N or P) was expanded to include the realities of these mutual interdependencies.

Keywords

Phytoplankton Elemental Ratio Marine Ecology Progress Series Harmful Algal Bloom Calanoid Copepod 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allen, J. R. D., J. Slinn, T. M. Shammon, R. G. Hartnoll, andS. J. Hawkins. 1998. Evidence for eutrophication of the Irish Sea over four decades.Limnology and Oceanography 43:1970–1974.Google Scholar
  2. Anderson, T. 1997. Pelagic Nutrient Cycles: Herbivores as Sources and Sinks. Springer-Verlag, New York.Google Scholar
  3. Chauvaud, L., R. Jean, O. Ragueneau, andG. Thouzeau. 2000. Long-term variation in the bay of Brest ecosystem: Benthicpelagic coupling revisited.Marine Ecology Progress Series 200:35–48.CrossRefGoogle Scholar
  4. Cloern, J. E. 2001. Our evolving conceptual model of the coastal eutrophication problem.Marine Ecology Progress Series 210:223–353.CrossRefGoogle Scholar
  5. Conley, D. J., S. S. Kilham, andE. Theriot. 1989. Differences in silica content between marine and freshwater diatoms.Limnology and Oceanography 34:205–213.Google Scholar
  6. Correll, D. L., T. E. Jordan, andD. E. Weller. 2000. Dissolved silicate dynamics of the Rhode River watershed and estuary.Estuaries 23:188–196.CrossRefGoogle Scholar
  7. Dayton, P. K. andE. Sala. 2001. Natural history: The sense of wonder, creativity and progress in ecology.Scientia Marina 65:199–206.Google Scholar
  8. del Almo, Y., B. Quéguiner, P. Tréguer, H. Breton, andL. Lampert. 1997. Impacts of high-nitrate freshwater inputs on macrotidal ecosystems. II. Specific role of the silicic acid pump in the year-round dominance of diatoms in the Bay of Brest (France).Marine Ecology Progress Series 161:225–237CrossRefGoogle Scholar
  9. Durbin, A. G., S. W. Nixon, andC. A. Oviatt. 1979. Effects of the spawning of the alewife,Alosa pseudoharrengus, on freshwater ecosystems.Ecology 60:8–17.CrossRefGoogle Scholar
  10. Egge, J. K. andD. L. Aksnes. 1992. Silicate as regulating nutrient in phytoplankton competition.Marine Ecology Progress Series 83:281–289.CrossRefGoogle Scholar
  11. Egge, J. K., andA. Jacobsen. 1997. Influence of silicate on particulate carbon production in phytoplankton.Marine Ecology Progress Series 147:219–230.CrossRefGoogle Scholar
  12. Egge, J. K. andB. R. Heimdal. 1994. Blooms of phytoplankton includingEmiliania huxleyi (Haptophyta). Effects of nutrient supply in different N∶P ratios.Sarsia 79:333–348.Google Scholar
  13. Elser, J. J., D. R. Dobberfuhl, N. A. Mackay, andJ. H. Schampel. 1996. Organism size, life history, and N∶P stoichiometry.BioScience 46:674–684.CrossRefGoogle Scholar
  14. Elser, J. J., M. M. Elser, N. A. Mackay, andS. R. Carpenter. 1988. Zooplankton-mediated transitions between N and P limited algal growth.Limnology and Oceanography 33:1–14.Google Scholar
  15. Finney, B. P., I. Gregory-Eaves, M. S. V. Douglas, andJ. P. Smol. 2002. Fisheries productivity in the northeastern Pacific Ocean over the past 2,200 years.Nature 416:729–733.CrossRefGoogle Scholar
  16. Fisher, T. R., L. W. Hardin, Jr.,D. W. Stanley, andL. G. Ward. 1988. Phytoplankton nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries.Estuarine Coastal and Shelf Science 27:61–93.CrossRefGoogle Scholar
  17. Furnas, M. J. 1990. In situ growth rates of marine phytoplankton: Approaches to measurements, community and species growth rate.Journal of Plankton Research 12:1117–1151.CrossRefGoogle Scholar
  18. Goldman, J. C. 1980. Physiological processes, nutrient availability and the concept of relative growth rate in marine phytoplankton ecology, p. 179–194.In P. Falkowski (ed.), Primary Production in the Sea. Plenum, New York.Google Scholar
  19. Guildford, S. J. andR. E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationships?Limnology and Oceanography 45:1213–1223.Google Scholar
  20. Guillard, R. R. L., P. Kilham, andT. A. Jackson. 1973. Kinetics of silicon-limited growth in the marine diatomThalassiosira pseudonana Hasle and Heimdal (=Cyclotella nana Hustedt).Journal of Phycology 9:233–237.Google Scholar
  21. Helfield, J. M. andR. J. Naiman. 2001. Effects of salmon-derived nitrogen on riparian forest growth and implications for stream productivity.Ecology 82:2403–2409.Google Scholar
  22. Howarth, R., W. G. Billen, D. Swaney, A. Townsend, N. Jaworski, K. Lajtha, J. A. Downing, R. Elmgren, N. Caraco, T. Jordan, F. Berendse, J. Freney, V. Kudeyarov, P. Murdoch, andZ. Zhao-Liang. 1996. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences.Biogeochemistry 35:75–139.CrossRefGoogle Scholar
  23. Humborg, C., D. Conley, L. Rahm, F. Wulff, A. Cosiasu, andV. Ittekkot. 2000. Silicon retention in river basins: Far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments.Ambio 29:45–50.CrossRefGoogle Scholar
  24. Jacobsen, A., J. K. Egge, andB. Heimdal. 1995. Effects of increased concentration of nitrate and phosphate during a spring-bloom experiment in mesocosm.Journal of Experimental and Marine Biology and Ecology 187:239–251.CrossRefGoogle Scholar
  25. Justić, D., N. N. Rabalais, andR. E. Turner. 1995a. Stoichiometric nutrient balance and origin of coastal eutrophication.Marine Pollution Bulletin 30:41–66.CrossRefGoogle Scholar
  26. Justić, D., N. N. Rabalais, R. E. Turner, andQ. Dortch. 1995b. Changes in nutrient structure of river-dominated coastal waters: Stoichiometric nutrient balance and its consequences.Estuarine and Coastal Shelf Science 40:339–356.CrossRefGoogle Scholar
  27. Kaiser, J. 2001. The other global pollutant: Nitrogen proves tough to curb.Science 294:1268–1269.CrossRefGoogle Scholar
  28. Karl, D. M. 1976. A sea of change: Biochemical variability in the north Pacific subtropical gyre.Ecosystems 2:181–214.CrossRefGoogle Scholar
  29. Keller, A. A., P. H. Doering, S. P. Kelly, andB. K. Sullivan. 1990. Growth of juvenile Atlantic menhaden,Brevoortias tyrannus (Pisces: Clupeidae) in MERL mesocosms: Effects of eutrophication.Limnology and Oceanography 35:109–122.Google Scholar
  30. Krokhin, E. M. 1975. Transport of nutrients by slamon migrating from the sea into lakes, p. 153–156.In A. D. Hasler (ed.), Coupling of Land and Water Systems. Springer-Verlag, New York.Google Scholar
  31. Kuuppo, P., R. Autio, H. Kuosa, O. Seälä, andD. S. Tanskanen. 1998. Nitrogen, silicate and zooplankton control of the planktonic food-web in spring.Estuarine and Coastal Shelf Science 46:65–75.CrossRefGoogle Scholar
  32. Main, T. M., D. R. Dobberfuhl, andJ. J. Elser. 1997. N∶P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis.Limnology and Oceanography 42:1474–1478.CrossRefGoogle Scholar
  33. Markert, B. F. 1998. Distribution and biogeochemistry of inorganic chemicals in the environment, p. 165–222.In G. Schuurmann and B. Markert (ed.), Ecotoxicology. Wiley and Sons, Inc., New York.Google Scholar
  34. Markert, B. F. (ed.). 1994. The biological system of the elements (BSE) for terrestrial plants (Glycophytes).The Science of the Total Environment 155:211–228.Google Scholar
  35. Morowtiz, H. J. 1968. Energy Flow in Biology. Academic Press, New York.Google Scholar
  36. Nixon, S. W., C. A. Oviatt, J. Frithsen, andB. Sullivan. 1986. Nutrients and the productivity of estuarine and coastal marine ecosystems.Journal of Limnological Society of South Africa 12:43–71.Google Scholar
  37. Officer, C. B. andJ. H. Ryther. 1980. The possible importance of silicon in marine eutrophication.Marine Ecology Progresse Series 3:83–91.CrossRefGoogle Scholar
  38. Paasche, E. 1973. The influence of cell size on growth rate, silica content, and some other properties of four marine diatoms species.Norwegian Journal of Botany 20:197–204.Google Scholar
  39. Plath, K. andM. Boersma 2001. Mineral limitation of zooplankton: Stoichiometric constraints and optimal foraging.Ecology 82:1260–1269.Google Scholar
  40. Pomeroy, L. R. 2001. Caught in the food web: Complexity made simples?Scientia Marina 65:31–40.CrossRefGoogle Scholar
  41. Rahm, L., D. Conley, P. Sandén, F. Wulff, andP. Stålnacke. 1996. Time series analysis of nutrient inputs to the Baltic Sea and changing DSi/N ratios.Marine Ecology Progress Series 130:221–228.CrossRefGoogle Scholar
  42. Redfield, A. C. 1934. On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton, James Johnstone Memorial Volume. The University of Liverpool Press, Liverpool, U.K.Google Scholar
  43. Redfield, A. C. 1958. The biological control of chemical factors in the environment.American Scientist 46:205–222.Google Scholar
  44. Redfield, A. C. circa 1973. Alfred C. Redfield, Naturalist 1890–1983: His scientific career, from interviews by E. R. Marsh. Copy from data Library and Archives, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts.Google Scholar
  45. Redfield, A. C., B. H. Ketchum, andF. A. Richards. 1963. The influence of organisms on the composition of seawater, p. 26–77.In M. N. Hill (ed.), The Sea, Volume 2. Interscience Publishers, John Wiley, New York.Google Scholar
  46. Richards, F. A. 1958. Dissolved silicate and related properties of some western North Atlantic and Caribbean waters.Journal of Marine Research 17:449–465.Google Scholar
  47. Scheffer, M. 1990. Multiplicity of stable states in freshwater systems.Hydrobiologia 200/201:475–486.CrossRefGoogle Scholar
  48. Siever, R. 1992. The silica cycle in the Precambrian.Geochima et Cosmochimica Acta 56:3265–3272.CrossRefGoogle Scholar
  49. Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic, p. 29–40.In E. Granéli, B. Sundstrom, L. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton. Elsevier Science Publishers, New York.Google Scholar
  50. Sterner, R. W.. 1990. The ratio of nitrogen to phosphorus resupplied by herbivores: Zooplankton and the algal competitive arena.American Naturalist 136:209–229.CrossRefGoogle Scholar
  51. Sterner, R. W. andN. B. George. 2000. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes.Ecology 81:127–140.CrossRefGoogle Scholar
  52. Svensen, C., J. K. Egge, andJ. E. Stiansen. 2001. Can silicate and turbulence regulate the vertical flux of biogenic matter? A mesocosm study.Marine Ecology Progress Series 217:67–80.CrossRefGoogle Scholar
  53. Tilman, D., J. Fargione, J. B. Wolff, C. D’Antonio, A. Dobson, R. Howarth, D. Schindler, W. H. Schlesinger, D. Simberloff, andD. Swackhamer. 2001. Forecasting agriculturally driven global environmental change.Science 292:281–284.CrossRefGoogle Scholar
  54. Tilman, D. andS. S. Kilham. 1976. Phosphate and silicate growth and uptake kinetics of the diatomsAsterionella formosa andCyclotella meneghiniana in batch and semicontinous culture.Journal of Phycology 12:375–383.Google Scholar
  55. Tréguer, P. andP. Pondaven. 2000. Silica control of carbon dioxide.Nature 406:357–359.CrossRefGoogle Scholar
  56. Turner, R. E., N. Qureshi, N. N. Rabalais, Q. Dortch, D. Justić, R. Shaw, andJ. Cope. 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs.Proceedings of the National Academy of Sciences 95:13048–13051.CrossRefGoogle Scholar
  57. Turner, R. E., N. N. Rabalais, D. Justic, and Q. Dortch. 2002. Global patterns of dissolved N, P and Si in large rivers.Biogeochemistry.Google Scholar
  58. Verity, P. G. andV. Smetacek. 1996. Organism life cycles, predation, and the structure of marine pelagic ecosystems.Marine Ecology Progress Series 130:277–293.CrossRefGoogle Scholar
  59. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, andD. G. Tilman. 1997. Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications 7:737–750.Google Scholar

Copyright information

© Estuarine Research Federation 2002

Authors and Affiliations

  1. 1.Coastal Ecology InstituteLouisiana State UniversityBaton Rouge

Personalised recommendations