Skip to main content
Log in

Born duality and strings in hadrodynamics and electrodynamics

Борновская дуальность и нити в адродинамике и электродинамике

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

We propose a dimension-selecting duality principle for electrodynamics and for hadrodynamics of relativistic strings. Dual theories are identical in formal structure to Maxwell's electrodynamics. Maximal dual systems must be two dimensional, with as their simplest examples all the strings of dual-resonance models. Minimal dual systems are realized by Born-Infeld electrodynamics in four dimensions. From these two infinite classes of theories, the added constraints of general covariance and shock-free wave propagation single out uniquely two exceptional systems. One is the Nambu string, the other is the original Born Lagrangian admitting Nambu-string solutions in its strong-field limit. Our analysis stresses the physics and naturalness of string structures in gauge theories. It leads to a geometro-dynamical interpretation of the duality principle.

Riassunto

Si propone un principio di dualità che sceglie le dimensioni da applicare all'elettrodinamica e alla dinamica adronica delle corde relativistiche. Le teorie duali sono identiche per struttura formale alla elettrodinamica di Maxwell. I sistemi duali massimi possono essere bidimensionali, avendo come esempio più semplice tutte le corde dei modelli di risonanze duali. Sistemi duali minimi sono costituiti dall'elettrodinamica di Born-Infeld in quattro dimensioni. Da queste due classi infinite di teorie, aggiungendo le condizioni di covarianza generale e di propagazione dell'onda priva d'urti, si estraggono due soli sistemi eccezionali. Uno è la corda di Nambu, l'altro è il Lagrangiano di Born originale che ammette come soluzioni, nelle condizioni limiti di campo forte, corde di Nambu. Con questa analisi si esaltano la fisica e la naturalezza delle strutture a corde nelle teorie di gauge. Con ciò si perviene a un'interpretazione geometrico-dinamica del principio di dualità.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Footnotes

  1. Y. Nambu:Duality and Hadrodynamics, Lectures at the Copenhagen Summer Symposium (1970), unpublished.

  2. C. Rebbi: lectures at the1973 Erice Summer School, CERN preprint TH 1691 and references therein.

  3. Y. Nambu:Dual models of hadrons, talk at theAPS Chicago Meeting, January 1970, EFI preprint COO-264-535.

  4. M. Born:Ann. Inst. Poincaré, Vol.7, fasc. 4, 189 (1937) (in French) and references therein.

  5. H. C. Tze:Lett. Nuovo Cimento,11, 401 (1973).

    Article  Google Scholar 

  6. For a review ofK-vector calculus—aK-vector is an antisymmetric tensor of rankK—seeC. Truesdell andR. Toupin:Handbuck der Physik, edited byS. Flugge (Berlin, 1960), p. 328, orL. Brand:Vector and Tensor Analysis (New York, N. Y., 1947).

  7. M. Spivak:Calculus on Manifold (New York, N. Y., 1965), p. 26.

  8. D. I. Blokintsev:Nuovo Cimento,2 A, 632 (1971), and references therein.

    ADS  Google Scholar 

  9. T. Tanuiti:Suppl. Prog. Theor. Phys.,9, 69 (1959);A. Jeffrey andT. Tanuiti:Nonlinear Wave Propagation, Chap. 1 (New York, N. Y., 1964).

    Article  ADS  Google Scholar 

  10. G. Boilat:Journ. Math. Phys.,11, 941 (1970).

    Article  ADS  Google Scholar 

  11. Y. Nambu:Proceedings of International Conference on Symmetries and Quark Models, edited byR. Chand (New York, N. Y., 1970);H. B. Nielsen:XV International Conference on High Energy Physics, Kiev, 1970 (unpublished);L. Susskind:Nuovo Cimento,69 A, 457 (1970).

  12. W. Thirring:Ann. of Phys.,3, 91 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Y. Aharaanov, A. Casher andL. Susskind:Phys. Lett.,35 B, 512 (1971).

    Article  ADS  Google Scholar 

  14. L. P. Eisenhart:An Introduction to Differential Geometry (Princeton, N. J., 1940), p. 158.

  15. F. Mansouri andY. Nambu:Phys. Lett.,39 B, 375 (1972).

    Article  ADS  Google Scholar 

  16. S. Weinberg:Gravitation and Cosmology (New York, N. Y., 1972), p. 162.

  17. R. Osserman:A Survey of Minimal Surfaces, Chap. 3 (New York, N. Y., 1969).

  18. G. Konisi:Progr. Theor. Phys.,48, 2008 (1972).

    Article  ADS  Google Scholar 

  19. R. Rund:Hamilton-Jacobi Theory and the Calculus of Variations (New York, N. Y., 1966), p. 272.

  20. M. Born:Nature,132, 282 (1933);M. Born andL. Infeld:Nature,132, 970 (1933).

    Article  ADS  Google Scholar 

  21. E. Schrödinger:Proc. Roy. Soc., A150, 465 (1935);J. A. Wheeler:Geometrodynamics (New York, N. Y., 1962), p. 280. This symmetry is often called achiral transformation as it has an analogue in they 5 invariance for the neutrino field in curved space-time\(\psi ' = \exp \left[ {\frac{1}{2}i\beta _0 \gamma _5 } \right] \psi \).

    Article  ADS  Google Scholar 

  22. J. Plebanski:1968 Lectures on Nonlinear Electrodynamics (Copenhagen, 1970), p. 87.

  23. P. A. M. Dirac:Proc. Roy. Soc., A257, 33 (1960);Lectures in Quantum Mechanics (Belfer Grad. School of Sciences, Monograph 2, New York, N. Y., 1964), p. 81.

    Article  MathSciNet  ADS  Google Scholar 

  24. H. B. Nielsen andP. Olesen:Nucl. Phys.,57 B, 367 (1973), the reader is referred to this paper for all the details.

    Article  ADS  Google Scholar 

  25. F. John:Maths Applied to Physics, edited byE. Roubine (Berlin, 1970), p. 239;C. W. Misner andJ. A. Wheeler:Ann. of Phys.,2, 525 (1952).

  26. For an elaborate discussion and proofs, seeW. A. Newcomb:Ann. of Phys.,3, 347 (1958).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. The idea of a physical string is an old one, seeL. P. Williams:Michael Faraday, A Biography (London, 1965), p. 435;P. A. M. Dirac:Scientific American,208, 5, 45 (1963).

  28. P. A. M. Dirac:Phys. Rev.,74, 817 (1948).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. G. Wentzel:Suppl. Progr. Phys., No. 37-38, 163 (1966).

    Article  ADS  Google Scholar 

  30. M. A. Tonnelat:Histoire du principle de relativité (Paris, 1971), p. 392.

  31. W. Heisenberg andH. Euler:Zeit. Phys.,98, 714 (1936).

    Article  ADS  Google Scholar 

  32. C. H. Townes:Contemporary Physics, Vol.1,Trieste Symposium, 1968 (Vienna, 1969), p. 295.

  33. M. A. Melvin:Phys. Rev.,139, B 225 (1965).

    Article  ADS  Google Scholar 

  34. A. Casher, J. Kogut andL. Susskind: Tel Aviv University TAUP 373 (June 1973).

  35. A. Trautman:Rep. Maths. Phys.,1, 29 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. A similar view is implicit in the works ofP. Olesen andH. B. Nielsen:Nucl. Phys.,61 B, 45 (1973);L. J. Tassie:Phys. Lett.,46 B, 397 (1973).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory ofZiro Koba.

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tze, H.C. Born duality and strings in hadrodynamics and electrodynamics. Nuov Cim A 22, 507–526 (1974). https://doi.org/10.1007/BF02804836

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02804836

Navigation