Metallurgical Transactions A

, Volume 23, Issue 6, pp 1751–1761 | Cite as

High-temperature low-cycle fatigue behavior of a NIMONIC PE-16 superalloy—Correlation with deformation and fracture

  • M. Valsan
  • P. Parameswaran
  • K. Bhanu Sankara Rao
  • M. Vijayalakshmi
  • S.L. Mannan
  • D.H. Shastry
Mechanical Behavior

Abstract

Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ and carbides), alloy B with double aging treatment (spherical γ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ and consequent softening. Coarser γ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.F. Coffin:Fatigue at Elevated Temperatures, STP 520, ASTM, Philadelphia, PA, 1973, pp. 112–22.Google Scholar
  2. 2.
    M. Gell and G.R. Leverant:Fatigue at Elevated Temperatures STP 520, ASTM, Philadelphia, PA, 1973 pp. 37–67.Google Scholar
  3. 3.
    H.F. Merrick:Metall. Trans., 1974, vol. 5, pp. 891–97.CrossRefGoogle Scholar
  4. 4.
    D. Fourier and A. Pineau:Metall. Trans. A, 1977, vol. 8A, pp. 1095–1105.Google Scholar
  5. 5.
    M.F. Day and G.B. Thomas:Met. Sci., 1979, vol. 13, pp. 25–33.CrossRefGoogle Scholar
  6. 6.
    M. Clavel, C. Levaillant, and A. Pineau:Proc. Symp. on Creep-Fatigue Environment Interactions, R. Pelloux and N. Stoloff, eds., Milwaukee, WI, Sept. 1979, AIME, New York, NY, 1980, p. 24.Google Scholar
  7. 7.
    S.D. Antolovich, S. Liu, and R. Baur:Metall. Trans. A., 1981, vol. 12, pp. 473–81.CrossRefGoogle Scholar
  8. 8.
    K. Bhanu Sankara Rao, V. Seetharaman, S.L. Mannan, and P. Rodriguez:J. Nucl. Mater., 1981, vol. 102, p. 7.CrossRefGoogle Scholar
  9. 9.
    V. Seetharaman, K. Bhanu Sankara Rao, V.S. Raghunathan, and S.L. Mannan: inProc. DAE Materials Science Symp. on Strengthening Mechanisms in Solids, Surathkal, India, 1981, pp. 105–18.Google Scholar
  10. 10.
    K. Bhanu Sankara Rao, V. Seetharaman, S.L. Mannan, and P. Rodriguez:Mater. Sci. Eng., 1983, vol. 58, p. 93.CrossRefGoogle Scholar
  11. 11.
    V. Seetharaman, K. Bhanu Sankara Rao, S.L. Mannan, and P. Rodriguez:Mater. Sci. Eng., 1984, vol. 63, p. 35.CrossRefGoogle Scholar
  12. 12.
    K. Bhanu Sankara Rao, V. Seetharaman, S.L. Mannan, and P. Rodriguez:High-Temp. Mater. Processes, 1986, vol. 7, p. 63.Google Scholar
  13. 13.
    E. Nembach and G. Neite:Prog. Mater. Sci., 1985, vol. 29, p. 177.CrossRefGoogle Scholar
  14. 14.
    E. Nembach and C.K. Chow:Mater. Sci. Eng., 1978, vol. 36, p. 271.CrossRefGoogle Scholar
  15. 15.
    T. Jayakumar, Baldev Raj, D.K. Bhattacharya, P. Rodriguez, and O. Prabhakar:Trans. Ind. Inst. Metals, 1987, vol. 40, p. 147.Google Scholar
  16. 16.
    B. Reppich, P. Sheep, and G. Whener:Acta Metall., 1982, vol. 30, p. 87.CrossRefGoogle Scholar
  17. 17.
    R.C. Lobb:Mater. Sci. Eng., 1979, vol. 38, p. 249.CrossRefGoogle Scholar
  18. 18.
    B. Reppich, H. Bugler, R. Leistner, and M. Schutze.Proc. 2nd Int. Conf. on Creep and Fracture of Engineering Materials and Structures, Part I, Pineridge Press, Swansea, United Kingdom, 1984, pp. 279–97.Google Scholar
  19. 19.
    C.H.D. Arbuthnot:Proc. 4th European Conf. on Fracture and Role of Microstructure, Leoben, Austria, Sept. 22–24, 1982, The Chameleon Press Ltd., London, United Kingdom, 1982, vol. 2, pp. 407–13.Google Scholar
  20. 20.
    M. Sundararaman, W. Chen, V. Singh, and R.P. Wahi:Acta Metall., 1990, vol. 38, pp. 1813–22.CrossRefGoogle Scholar
  21. 21.
    R.P. Wahi, V.V. Kutumba Rao, H.M. Yun, and W. Chem:2nd Int. Conf. of Low Cycle Fatigue and Elasto-Plastic Behaviour of Metals, Sept. 7–11, 1987, Munich, Elsevier, London.Google Scholar
  22. 22.
    M. Valsan, K. Bhanusankara Rao, and S.L. Mannan:Trans. Ind. Inst. Metals, 1989, vol. 42, pp. S203-S216.Google Scholar
  23. 23.
    M. Valsan, K. Bhanusakara Rao, and S.L. Mannan:Advances in Francture Research, 7th Int. Conf. on Fracture, held at University of Houston, Houston, TX, Mar. 20–24, 1989, Pergamon, vol. 2, pp 1323–30.Google Scholar
  24. 24.
    D.T. Raske and J. Morrow: STP 465, ASTM, Philadelphia, PA, 1969, p. 1.Google Scholar
  25. 25.
    E. Nembach:Z. Metallkd., 1981, vol. 72, p. 401.Google Scholar
  26. 26.
    C.H. Wells and C.P. Sullivan:Trans ASM, 1970, vol. 60, p. 217.Google Scholar
  27. 27.
    R.E. Stoltz and A.G. Pineau:Mater. Sci. Eng., 1978, vol. 34, p. 275.CrossRefGoogle Scholar
  28. 28.
    J.B. Lerch and V. Gerold:Acta Metall., 1985, vol. 33 (9), pp. 1709–16.CrossRefGoogle Scholar
  29. 29.
    B.A. Lerch and V. Gerold:Metall. Trans. A, 1987, vol. 18A, pp. 2135–41.Google Scholar
  30. 30.
    C. Calabrese and C. Laird:Mater. Sci. Eng., 1974, vol. 13, p. 141.CrossRefGoogle Scholar
  31. 31.
    C.E. Feltner and C. Laird, STP 467, ASTM, Philadelphia, PA, 1970, p. 77.Google Scholar
  32. 32.
    K.H. Chein and E.A. Starke, Jr.:Acta Metall., 1975, vol. 23, p. 1173.CrossRefGoogle Scholar
  33. 33.
    J.B. Clark and A.J. McEvily:Acta Metall., 1964, vol. 12, p. 1359.CrossRefGoogle Scholar
  34. 34.
    J.C. Grosskreutz:Metall. Trans., 1972, vol. 3, pp. 1255–62.CrossRefGoogle Scholar
  35. 35.
    W.H. Kim and C. Laird:Acta Metall., 1978, vol. 26, p. 789,CrossRefGoogle Scholar
  36. 36.
    E. Hombogen and K.H. Zum Gahr:Acta Metall., 1976, vol. 24, p. 581.CrossRefGoogle Scholar
  37. 37.
    S.D. Antolovich and N. Jayaraman:Fatigue-Environment and Temperature Effects, Proc. 27th Sagamore Army Materials Research Conf., July 14–18, 1980, New York, NY.Google Scholar
  38. 38.
    H.F. Merrick and S. Floreen:Metall. Trans. A, 1979, vol. 9A, pp. 231–36.Google Scholar
  39. 39.
    W.J. Mills and L.A. James: ASME Publication 7-WA/PUP-3, 1979.Google Scholar
  40. 40.
    S.R. Mediratta, V. Ramaswamy, and P. Rama Rao:Scripta Metall., 1986, vol. 20, pp. 555–58.CrossRefGoogle Scholar
  41. 41.
    R.E. Sanders, Jr. and E.A. Starke, Jr.:Mater. Sci. Eng., 1977, vol. 28, p. 53.CrossRefGoogle Scholar
  42. 42.
    T.H. Sanders, Jr. and E.A. Starke, Jr.:Metall. Trans. A, 1976, vol. 7A, pp. 1407–18.Google Scholar
  43. 43.
    L.F. Coffin, Jr.:J. Mater., 1971, vol. 6, p. 388.Google Scholar
  44. 44.
    M.F. Ashby and G.C. Smith:Phil. Mag., 1960, vol. 5, p. 300.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 1992

Authors and Affiliations

  • M. Valsan
    • 1
  • P. Parameswaran
    • 1
  • K. Bhanu Sankara Rao
    • 1
  • M. Vijayalakshmi
    • 1
  • S.L. Mannan
    • 1
  • D.H. Shastry
    • 2
  1. 1.Indira Gandhi Centre for Atomic ResearchKapakkamIndia
  2. 2.Metallurgy DepartmentIndian Institute of ScienceBangaloreIndia

Personalised recommendations