Skip to main content
Log in

The origins and detection of plant community structure: Reproductive versus vegetative processes

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

The exchange of ideas and information between vegetation ecology and pollination ecology is relatively restricted, yet both fields have devised methods to detect the structure of species assemblages and communities. To promote the exchange of ideas between fields I compare approaches, concepts, and problems faced by researchers working in each area. Both vegetative and reproductive interactions may generate assemblage structure through ecological sorting or through character displacement. Vegetative interactions may lead to assemblage organization more often by ecological sorting and reproductive interactions more often by character displacement. Vegetative interactions generally operate over shorter temporal and smaller spatial scales than reproductive interactions and may be affected more strongly by temporal and spatial heterogeneity in abiotic and biotic environments. These differences affect how the concept of ecological niche should be applied to plants. The Hutchinsonian concept of niche needs to be significantly modified before it can be usefully applied to plants.

Null models are a valuable tool for investigating both vegetative and reproductive structuring of plant assemblages; however, the procedures followed in the application of null models need further refinement. The appropriate formulation of the null model may require information that is unavailable, hence multiple models may have to be employed to “bracket” conclusions. The literature on pollination community ecology demonstrates that difficult decisions must be made about the likely processes that have generated the structure being tested, the relevant definition of sympatry, how guid membership should be defined and employed, and what constraints should be incorporated into the null model to impose realism. Differences in these decisions will affect the outcome of the analysis. While top-down studies of pattern have numerous advantages, they usually cannot identify the process(es) that have generated the patterns. Bottom-up, experimental studies can be useful for identifying the processes, but they can rarely be used to assess the structure of an entire natural assemblage. The optimal approach to studying assemblage structure is to detect patterns with top-down analysis and use experiments to identify the processes that generate and maintain the patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster W.S. (1980): Pollination relationships between four sympatric species ofCollinsia (Scrophulariaceae).—Bot. Soc. Amer. Misc. Ser. Publ. 158:8.

    Google Scholar 

  • Armbruster W.S. (1985): Patterns of character divergence and the evolution of reproductive ecotypes ofDalechampia scandens (Euphorbiaceae).—Evolution 39: 733–752.

    Article  Google Scholar 

  • Armbruster W.S. (1986): Reproductive interactions between sympatricDalechampia species: are natural assemblages “random” or organized?.—Ecology 67: 522–533.

    Article  Google Scholar 

  • Armbruster W.S., Edwards M.E. &Debevec E.M. (1994): Floral character displacement generates assemblage structure of Western Australian triggerplants (Stylidium).—Ecology 75: 315–329.

    Article  Google Scholar 

  • Armbruster W.S. &McGuire A.D. (1991): Experimental assessment of reproductive interactions between sympatricAster andErigeron (Asteraceae) in interior Alaska.—Amer. J. Bot. 78: 1449–1457.

    Article  Google Scholar 

  • Ashton P.S., Givnish T.J. &Appanah S. (1988): Staggered flowering in theDipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics.—Amer. Naturalist 132: 44–66.

    Article  Google Scholar 

  • Bengtsson J., Fagerström T. &Rydin H. (1994): Competition and coexistence in plant communities. —Trends Ecol. Evol. 9: 246–250.

    Article  Google Scholar 

  • Campbell D.C. (1985): Pollinator sharing and seed set ofStellaria pubera: competition for pollination.— Ecology 66: 554–563.

    Article  Google Scholar 

  • Campbell D.C. &Motten A. (1985): The mechanism of competition for pollination between two forest herbs.—Ecology 66: 554–563.

    Article  Google Scholar 

  • Chesson P. (1991): A need for niches?.—Trends Ecol. Evol. 6: 26–28.

    Article  Google Scholar 

  • Cole B.J. (1981): Overlap, regularity, and flowering phenologies.—Amer. Naturalist 117: 993–997.

    Article  Google Scholar 

  • Diamond J. &Gilpin M. (1982): Examinations of the null model of Connor and Simberloff for species co-occurrences on islands.—Oecologia 52: 64–74.

    Article  Google Scholar 

  • Fagerström T. (1988): Lotteries in communities of sessile organisms.—Trends Ecol. Evol. 3: 303–306.

    Article  Google Scholar 

  • Feinsinger P. (1987): Effects of plant species on each other’s polliation: is community structure influenced? —Trends Ecol. Evol. 2: 123–126.

    Article  Google Scholar 

  • Flemming T.H. (1985): Coexistence of five sympatricPiper (Piperaceae) species in a tropical dry forest.— Ecology 66: 688–700.

    Article  Google Scholar 

  • Flemming T.H. &Partridge B.L. (1984): On the analysis of phenological overlap.—Oecologia 62: 344–350.

    Article  Google Scholar 

  • Gleeson S.K. (1981): Character displacement in flowering phenologies.—Oecologia 51: 294–295.

    Article  Google Scholar 

  • Gotelli N.J. (1991): Metapopulation models: the rescue effect, the propagule rain, and the core-satellite hypothesis.—Amer. Naturalist 138: 768–776.

    Article  Google Scholar 

  • Grant P.R. &Abbott I. (1980): Interspecific competition, island biogeography and null hypothesis.— Evolution 34: 332–341.

    Article  Google Scholar 

  • Grubb P.J. (1977): The maintenance of species richness in plant communities. The importance of the regeneration niche.—Biol. Rev. 52: 107–145.

    Google Scholar 

  • Hanski I. (1982): Dynamics of regional distribution: the core and satellite species hypothesis.—Oikos 38: 210–221.

    Article  Google Scholar 

  • Harper J.L. (1967): A Darwinian approach to plant ecology.—J. Ecol. 55: 247–270.

    Article  Google Scholar 

  • Harvey P.H., Colwell R.K., Silvertown J.W. &May R.M. (1983): Null models in ecology. —Annual Rev. Ecol. Syst. 14: 189–211.

    Article  Google Scholar 

  • Hocking B. (1968): Insect-flower associations in the high Arctic, with special reference to nectar.—Oikos 19: 359–388.

    Article  Google Scholar 

  • Hubbell S.P. &Foster R.B. (1986): Biology, chance, and history and the structure of tropical rain forest tree communities.—In:Diamond J. &Case T.J. [eds.]: Community ecology, Harper and Row, New York, pp. 314–329.

    Google Scholar 

  • Hurlbert S.H. (1970): Flower number, flowering time, and reproductive isolation among ten species ofSolidago (Compositae).—Bull. Torrey Bot. Club 97: 189–193.

    Article  Google Scholar 

  • Hutchinson G.E. (1957): Concluding remarks.—Cold Spring Harbor Symp. Quant. Biol. 22: 415–427.

    Google Scholar 

  • Janzen D.H. (1971): Euglossine bees as long-distance pollinators for tropical plants.—Science 171: 203–205.

    Article  PubMed  Google Scholar 

  • Janzen D.H. (1985): Male dogs have fitness.—Biotropica 17: 205.

    Article  Google Scholar 

  • Kjellsson G. (1985): Seed fall and phenological overlap in a guild of ant-dispersed herbs.—Oecologia 68: 140–146.

    Article  Google Scholar 

  • Klimeš L. (1995): Small-scale distribution of species richness in a grassland (Bílé Karpaty Mts., Czech Republic).—Folia Geobot. Phytotax. 30: 499–510.

    Google Scholar 

  • Klimeš L., Jongepier J.W., &Jongepierová I. (1995): Variability in species richness and guild structure in two species-rich grasslands.—Folia Geobot. Phytotax. 30: 243–253.

    Google Scholar 

  • Kochmer J.P. &Handel S.N. (1986): Constraints and competition in the evolution of flowering phenology. —Ecol. Monogr. 56: 303–325.

    Article  Google Scholar 

  • Lack D. (1947): Darwin’s finches.—Cambridge University Press, Cambridge.

    Google Scholar 

  • Lepš J. (1995): Variance deficit is not reliable evidence for niche limitation.—Folia Geobot. Phytotax. 30: 455–459.

    Google Scholar 

  • Levin D.A. (1970): Reinforcement of reproductive isolation: plants versus animals.—Amer. Naturalist 104: 571–581.

    Article  Google Scholar 

  • Lewis H. (1961): Experimental sympatric populations ofClarkia.—Amer. Naturalist 104: 455–467.

    Google Scholar 

  • van der Maarel E. &Sykes M.T. (1993): Small-scale plant species turnover in a limestone grassland: the carousel model and some comments on the niche concept.—J. Veg. Sci. 4: 179–188.

    Article  Google Scholar 

  • McGuire A.D. (1989): The organization of flowering times of the insect-pollinated flora of south-facing bluffs in interior Alaska: evaluation of the reproductive-interference hypothesis—Ph.D. dissertation, Univ. Alaska Fairbanks, USA.

    Google Scholar 

  • McGuire A.D. (1993): Interactions for pollination between two synchronously bloomingHedysarum species (Fabaceae) in Alaska.—Amer. J. Bot. 80: 147–152.

    Article  Google Scholar 

  • McGuire A.D. &Armbruster W.S. (1991): An experimental test for reproductive interactions between two sequentially bloomingSaxifraga species.—Amer. J. Bot. 78: 214–219.

    Article  Google Scholar 

  • Mosquin T. (1971): Competition for pollinators as a stimulus for the evolution of flowering time.—Oikos 22: 398–402.

    Article  Google Scholar 

  • Murdy W.H., Johnson T.M. &Wright V.K. (1970): Competitive replacement ofTalinum mangesii byT. teretifolium in granite outcrop communities of Georgia.—Bot. Gaz. 131: 186–192.

    Article  Google Scholar 

  • Murray G.K., Feinsinger P., Busby W.H., Linhart Y., Beach J.H. &Kinsman S. (1987): Evaluation of character displacement among plants in two tropical pollination guilds.—Ecology 68: 1283–1293.

    Article  Google Scholar 

  • Palmer M.W. (1987): Variability in species richness within Minnesota oldfields: a use of the variance test.— Vegetatio 70: 61–64.

    Google Scholar 

  • Palmer M.W. &van der Maarel E. (1995): Variance in species richness, species association, and niche limitation.—Oikos 73: 203–213.

    Article  Google Scholar 

  • Parrish J.A.D. &Bazzaz F. (1979): Difference in pollination niche relationships in early-and late-successional plant communities.—Ecology 60: 597–610.

    Article  Google Scholar 

  • Pianka E.R. (1974): Niche overlap and diffuse competition.—Proc. Natl. Acad. USA 71: 2141–2145.

    Article  CAS  Google Scholar 

  • Pleasants J.M. (1980): Competition for bumblebee pollinators in Rocky Mountain plant communities.— Ecology 61: 1446–1459.

    Article  Google Scholar 

  • Pleasants J.M. (1990): Null-model tests for competitive displacement: the fallacy of not focusing on the whole community.—Ecology 71: 1078–1084.

    Article  Google Scholar 

  • Pojar J. (1974): Reproductive dynamics of four plant communities of southwestern British Columbia.—Canad. J. Bot. 52: 1819–1834.

    Article  Google Scholar 

  • Poole R.W. &Rathcke B.J. (1979): Regularity, randomness, and aggregation in flowering phenologies.— Science 203: 470–471.

    Article  PubMed  Google Scholar 

  • Rabininowitz D., Rapp J.K., Sork V.L., Rathcke B.J., Reese G.A. &Weaver J.C. (1981): Phenological properties of wind and insect-pollinated prairie plants.—Ecology 62: 49–56.

    Article  Google Scholar 

  • Rathcke B.J. (1988): Flowering phenology in a shrub community competition and constraint.—J. Ecol. 76: 975–994.

    Article  Google Scholar 

  • Reader R.J. (1975): Competitive relationships of some bog ericads for major insect pollinators.—Canad. J. Bot. 53: 1300–1305.

    Google Scholar 

  • Robertson C. (1895): The philosophy of flower seasons, and the phenological relations of the entomophilous flora and anthophilous insect fauna.—Amer. Naturalist 29: 97–117.

    Article  Google Scholar 

  • Schoener T.W. (1970): Non-synchronous spatial overlap of lizards in patchy habitatas.—Ecology 51: 408–418.

    Article  Google Scholar 

  • Shimida A. &Ellner S. (1984): Coexistence of plant species with similar niches.—Vegetatio 58: 29–55.

    Google Scholar 

  • Silvertown J. &Law R. (1987): Do plants need niches? Some recent developments in plant community ecology.—Trends Ecol. Evol. 2: 24–26.

    Article  Google Scholar 

  • Snow D.W. (1965): A possible selective factor in the evolution of fruiting seasons in tropical forest.—Oikos 15: 274–281.

    Article  Google Scholar 

  • Stiles F.G. (1977): Co-adapted competitors: the flowering seasons of hummingbird-pollinated plants in a tropical forest.—Science 198: 1170–1178.

    Article  Google Scholar 

  • Stiles F.G. (1979): Reply to Poole and Rathcke.—Science 203: 1177–1178.

    Google Scholar 

  • Tilman D. (1982): Resource competition and community structure.—Princeton Univ. Press, Princeton, NY.

    Google Scholar 

  • Tilman D. (1988): Dynamics and structure of plant communities.—Princeton Univ. Press, Princeton, NY.

    Google Scholar 

  • Toft C.A. &Shea P.J. (1983): Detecting community-wide patterns: estimating power strengthens statistical inference.—Amer. Naturalist 122: 618–625.

    Article  Google Scholar 

  • Waser N.M. (1978): Competition for hummingbird pollination and sequential flowering in two Colorado wildflowers.—Ecology 59: 934–944.

    Article  Google Scholar 

  • Waser N. M. (1983): Competition for pollination and floral character differences among sympatric plant species: a review of the evidence.—In:Jones C.E. &Little R.J. [eds.]: Handbook of experimental pollination ecology.—Van Nostrand Reinhold, New York, pp. 277–293.

    Google Scholar 

  • Watkins A.J. &Wilson J.B. (1992): Fine-scale community structure of lawns.—J. Ecol. 80: 15–24.

    Article  Google Scholar 

  • Whalen M.D. (1978): Reproductive character displacement and floral diversity inSolanum sect.Androceras. —Syst. Bot. 3: 77–86.

    Article  Google Scholar 

  • Wheelwright N.T. (1985): Competition for dispersers, and the time of flowering and fruiting in a guild of tropical trees.—Oikos 44: 465–477.

    Article  Google Scholar 

  • Wilson J.B. (1995): Testing for community structure: a Bayesian approach.—Folia Geobot. Phytotax. 30: 461–469.

    Google Scholar 

  • Wilson J.B. & Gitay H. (1995a): Community structure and assembly rules in a dune slack: Variance in richness, guild proportionality, biomass constancy and dominance/diversity relations.—Vegetatio (in press).

  • Wilson J.B. &Gitay H. (1995b): Limitations to species coexistence: evidence for competition from field observations, using a patch model.—J. Veg. Sci. 6: 369–376.

    Article  Google Scholar 

  • Wilson J.B. & Whittaker R.J. (1995): Assembly rules demonstrated in a saltmarsh community.—J. Ecol. 83 (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armbruster, W.S. The origins and detection of plant community structure: Reproductive versus vegetative processes. Folia Geobot 30, 483–497 (1995). https://doi.org/10.1007/BF02803978

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803978

Keyword

Navigation