Skip to main content
Log in

Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware estuary

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

The distribution, abundance, and dispersal patterns of horseshoe crab (Limulus polyphemus) trilobite larvae were determined from 671 plankton tows taken near a spawning beach in lower Delaware Bay, New Jersey, in 1998 and 1999. In both years, peaks in larval abundance occurred during periods of rough surf (>30 cm wave heights). Planktonic larvae were significantly more abundant nocturnally than during the day, but there was no evidence of a lunar component to larval abundance. Larvae were strongly concentrated inshore; trilobites were 10–100 times more abundant in the immediate vicinity of the shoreline than they were 100–200 m offshore. The strong tendency ofLimulus larvae to remain close to the beach suggests that their capability for long-range dispersal between estuaries is extremely limited. We suggest that limited larval dispersal potential may help explain previously observed patterns of genetic variation among the Mid-Atlantic horseshoe crab populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Avise, J. C. 1992. Molecular population structure and the biogeographic history of a regional fauna: A case history with lessons for conservation biology.Oikos 63:62–76.

    Article  CAS  Google Scholar 

  • Ayvazian, S. G., M. S. Johnson, andD. J. McGlashan. 1994. High levels of genetic subdivision of marine and estuarine populations of the estuarine catfishCnidoglanis macrocephalus (Plotosidae) in southwestern Australia.Marine Biology 118:25–31.

    Article  CAS  Google Scholar 

  • Botton, M. L. andR. E. Loveland. 1992. Body size, morphological constraints, and mated pair formation in four populations of horseshoe crabs (Limulus polyphemus) along a geographic cline.Marine Biology 112:409–415.

    Article  Google Scholar 

  • Botton, M. L., R. E. Loveland, andT. R. Jacobsen. 1992. Overwintering by trilobite larvae of the horseshoe crabLimulus polyphemus on a sandy beach of Delaware Bay (New Jersey, USA).Marine Ecology Progress Series 88:289–292.

    Article  Google Scholar 

  • Botton, M. L. andJ. W. Ropes. 1987. Populations of horseshoe crabs,Limulus polyphemus, on the northwestern Atlantic continental shelf.Fishery Bulletin 85:805–812.

    Google Scholar 

  • Ehlinger, G. S. 2002. Spawning behavior and larval biology of the American horseshoe crab,Limulus polyphemus, in a microtidal coastal lagoon. Ph.D. Dissertation, Florida Institute of Technology, Melbourne, Florida.

    Google Scholar 

  • Ehlinger, G. S., R. A. Tankersley, andM. B. Bush. 2003. Spatial and temporal patterns of spawning and larval, hatching by the horseshoe crab,Limulus polyphemus, in a microtidal coastal lagoon.Estuaries 26:631–640.

    Article  Google Scholar 

  • Epifanio, C. E. 1988. Transport of crab larvae between estuaries and the continental shelf.Lecture Notes on Coastal and Estuarine Studies 22:291–305.

    Google Scholar 

  • Epifanio, C. E. 1995. Transport of blue crab (Callinectes sapidus) larvae in the waters off mid-Atlantic statesBulletin of Marine Science 57:713–725.

    Google Scholar 

  • Galperin, B. andG. L. Mellor. 1990. A time-dependent, three-dimensional model of the Delaware Bay and river system. Part 2: Three-dimensional flow fields and residual circulation.Estuarine, Coastal and Shelf Science 31:255–281.

    Article  Google Scholar 

  • Garvine, R. W., C. E. Epifanio, C. C. Epifanio, andK.-C. Wong. 1997. Transport and recruitment of blue crab larvae: A model with advection and mortality.Estuarine, Coastal and Shelf Science 45:99–111.

    Article  Google Scholar 

  • Gold, J. R., T. L. King, L. R. Richardson, D. A. Bohlmeyer, andG. C. Matlock. 1994. Allozyme differentiation within and between red drum (Sciaenops ocellatus) from the Gulf of Mexico and Atlantic Ocean.Journal of Fish Biology 44:567–590.

    Article  Google Scholar 

  • Grimm, V., K. Reise, andM. Strasser. 2003. Marine metapopulations: A useful concept?Helgoland Marine Research 56:222–228.

    Google Scholar 

  • Hanski, I. andM. Gilpin. 1991. Metapopulation dynamics: Brief history and conceptual domain.Biological Journal of the Linnaean Society 42:3–16.

    Article  Google Scholar 

  • Hedgecock, D.. 1986. Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates?Bulletin of Marine Science 39:550–564.

    Google Scholar 

  • Hidu, H. andH. H. Haskin. 1971. Setting of the American oyster related to environmental factors and larval behavior.Proceedings of the National Shellfisheries Association 61:35–50.

    Google Scholar 

  • Hines, A. H.. 1986. Larval patterns in the life histories of brachyuran crabs (Crustacea, Decapoda, Brachyura).Bulletin of Marine Science 39:444–466.

    Google Scholar 

  • Itow, T. 1993. Crisis in the Seto Inland Sea: The decimation of the horseshoe crab.EMECS Newsletter 3:10–11.

    Google Scholar 

  • Jackson, N. L. andK. F. Nordstrom. 1993. Depth of activation of sediment by plunging breakers on a steep sand beach.Marine Geology 115:143–151.

    Article  Google Scholar 

  • Lambert, R. andC. E. Epifanio. 1982. A comparison of dispersal strategies in two genera of brachyuran crab in a secondary estuary.Estuaries 5:182–188.

    Article  Google Scholar 

  • Loveland, R. E. andM. L. Botton. 1992. Size dimorphism and the mating system in horseshoe crabs,Limulus polyphemus L.Animal Behaviour 44:907–916.

    Article  Google Scholar 

  • McConaugha, J. R. 1992. Decapod larvae: Dispersal, mortality, and ecology. A working hypothesis.American Zoologist 32:512–523.

    Google Scholar 

  • McMillen-Jackson, A. L., T. M. Bert, andP. Steele. 1994. Population genetics of the blue crabCallinectes sapidus: Modest population structuring in a background of high gene flow.Marine Biology 118:53–65.

    Article  Google Scholar 

  • Morton, B. 1999. On turtles, dolphins and, now, Asia's horsehoe crabs.Marine Pollution Bulletin 38:845–846.

    Article  CAS  Google Scholar 

  • Mumby, P. J. 1999. Can Caribbean coral populations be modelled at metapopulation scales?Marine Ecology Progress Series 180:275–288.

    Article  Google Scholar 

  • Ovenden, J. R. 1990. Mitochondrial DNA and marine stock assessment: A review.Australian Journal of Marine and Freshwater Research 41:835–853.

    Article  Google Scholar 

  • Palmer, A. R. andR. R. Strathmann. 1981. Scale of dispersal in varying environments and its implications for life histories of marine invertebrates.Oecologia 48:308–318.

    Article  Google Scholar 

  • Palumbi, S. R. 1994., Genetic divergence, reproductive isolation, and marine speciation.Annual Review of Ecology and Systematics 25:547–572.

    Article  Google Scholar 

  • Palumbi, S. R. 1995. Using genetics as an indirect estimator of larval dispersal, p. 369–387.In I. McEdward (ed.) Ecology of Marine Invertebrate Larvae. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Pape, E. H. andR. W. Garvine., 1982. The subtidal circulation in Delaware Bay and adjacent shelf waters.Journal of Geophysical Research 87:7955–7970.

    Article  Google Scholar 

  • Penn, D. andH. J. Brockmann. 1994. Nest-site selection in the horseshoe crab,Limulus polyphemus.Biological Bulletin 187:373–384.

    Article  Google Scholar 

  • Pierce, J. C., G. Tan, andP. M. Gaffney. 2000. Delaware Bay and Chesapeake Bay populations of the horseshoe crabLimulus polyphemus are genetically distinct.Estuaries 23:690–698.

    Article  CAS  Google Scholar 

  • Ray, G. C. 1997. Do the metapopulation dynamics of estuarine fishes influence the stability of shelf ecosystems?Bulletin of Marine Science 60:1040–1049.

    Google Scholar 

  • Reeb, C. A. andJ. C. Avise. 1990. A genetic discontinuity in a continuously distributed species: Mitochondrial DNA in the American oyster,Crassostrea virginica.Genetics 124:397–406.

    CAS  Google Scholar 

  • Riska, B. 1981. Morphological variation in the horseshoe crabLimulus polyphemus.Evolution 35:647–658.

    Article  Google Scholar 

  • Roberts, C. M. 1997. Connectivity and management of Caribbean coral reefs.Science 278:1454–1457.

    Article  CAS  Google Scholar 

  • Roman, M. R. andW. C. Boicourt. 1999. Dispersion and recruitment of crab larvae in the Chesapeake Bay plume: Physical and biological controls.Estuaries 22:563–574.

    Article  Google Scholar 

  • Rudloe, A. 1979. Locomotor and light responses of larvae of the horseshoe crab,Limulus polyphemus (L.).Biological Bulletin 157:494–505.

    Article  Google Scholar 

  • Saunders, N. C., L. G. Kessler, andJ. C. Avise. 1986. Genetic variation and geographic differentiation in mitochondrial DNA of the horseshoe crab,Limulus polyphemus.Genetics 112: 613–627.

    Google Scholar 

  • Scheltema, R. S. 1986. On dispersal and planktonic larvae of benthic invertebrates: An eclectic overview and summary of problems.Bulletin of Marine Science 39:290–322.

    Google Scholar 

  • Schrading, E., T. O'Connell, S. Michels, andP. Perra. 1998. Interstate fishery management plan for horseshoe crab. Fishery Management Report No. 32. Atlantic States Marine Fisheries Commission, Washington, D.C.

    Google Scholar 

  • Selander, R. K., S. Y. Yang, R. C. Lewontin, andW. E. Johnson. 1970. Genetic variation in the horseshoe crab (Limulus polyphemus), a phylogenetic “relic”.Evolution 24:402–414.

    Article  Google Scholar 

  • Shuster, Jr.,C. N. 1955. On morphometric and serological relationships within the Limulidae, with particular reference toLimulus polyphemus. Ph.D. Dissertation, New York University, New York.

    Google Scholar 

  • Shuster, Jr.,C. N. 1979. Distribution of the American horseshoe “crab,”Limulus polyphemus (L.), p. 3–26.In E. Cohen (ed.) Biomedical Applications of the Horseshoe Crab (Limulidae). Liss, New York.

    Google Scholar 

  • Solé-Cava, A. M., J. P. Thorpe, andC. D. Todd. 1994. High genetic similarity between geographically distant populations in a sea anemone with low dispersal capabilities.Journal of the Marine Biological Association of the United Kingdom 74:895–902.

    Google Scholar 

  • Stoner, A. W., R. A. Glazer, andP. J. Barile. 1996. Larval supply to queen conch nurseries: Relationships with recruitment processes and population size in Florida and the Bahamas.Journal of Shellfish Research 15:407–420.

    Google Scholar 

  • Tuck, G. N. andH. P. Possingham. 2000. Marine protected areas for spatially structured exploited stocks.Marine Ecology Progress Series 192:89–101.

    Article  Google Scholar 

  • Walls, E. A., J. Berkson, andS. A. Smith. 2002. The horseshoe crab,Limulus polyphemus. 200 million years of existence, 100 years of study.Review in Fisheries Science 10:39–73.

    Article  Google Scholar 

  • Widener, J. W. andR. B. Barlow. 1999. Decline of a horseshoe crab population, on Cape Cod.Biological Bulletin 197:300–302.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Botton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botton, M.L., Loveland, R.E. Abundance and dispersal potential of horseshoe crab (Limulus polyphemus) larvae in the Delaware estuary. Estuaries 26, 1472–1479 (2003). https://doi.org/10.1007/BF02803655

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803655

Keywords

Navigation