, Volume 27, Issue 3, pp 501–514 | Cite as

The soft-bottom macrobenthos of North Carolina estuaries

  • Jeffrey L. Hyland
  • W. Leonard Balthis
  • Martin Posey
  • Courtney T. Hackney
  • Troy Alphin


The structure of macro infaunal (>0.5 mm sieve size) assemblages was examined in samples of unconsolidated substrates collected during the summers of 1994–1997 at 208 stations throughout North Carolina estuaries. Numerical classification (cluster analysis) of stations resulted in 14 distinct site groups that reflected discernible habitatrelated patterns in species distributions. Multiple discriminant analysis, performed on synoptic abiotic variables (depth, salinity, dissolved oxygen, pH, percent silt-clay), showed that the separation of site groups was related primarily to salinity. Percent silt-clay had a secondary influence on the separation of sites within similar salinity zones. Species diversity among site groups generally decreased with decreasing salinity and increasing mud content of sediment. Nodal analysis showed a wide range in constancy and fidelity of species assemblages within site groups. Some assemblages dominated by euryhaline species had no particular affinity with any one site group. The strongest affinities, as evidenced by high values of both constancy and fidelity, were displayed by an assemblage of oligochaetes, insect larvae, gammaridean amphipods, and the clamCorbicula fluminea in tidal freshwater muds; and an assemblage of haustoriid amphipods, the bivalveDonax variabilis, the polychaeteParaonis fulgens, and unidentified echinoids at high-salinity sites in outer Pamlico Sound near ocean inlets. A series of stations with impaired benthic assemblages in polluted habitats emerged from the cluster analysis and was distinguishable from other site groups that reflected a greater influence of natural controlling factors (such as salinity and sediment type) on species distributions. These results suggest that the interaction of both anthropogenic and natural environmental controlling factors is important in defining the structure of these infaunal assemblages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alden, R. W., D. M. Dauer, J. A. Ranasinghe, L. C. Scott, andR. J. Llanso. 2002. Statistical verification of the Chesapeake Bay benthic index of biotic integrity.Environmetrics 13:473–498.CrossRefGoogle Scholar
  2. Boesch, D. F. 1977. Application of numerical classification in ecological investigations of water pollution. U.S. Environmental Protection Agency, ROAP/TASK No. 21, BEI. Corvallis Environmental Research Laboratory, Newport, Oregon.Google Scholar
  3. Bray, J. R. andJ. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin.Ecological Monographs 27:320–349.CrossRefGoogle Scholar
  4. Brett, C. E. 1963. Relationships between marine invertebrate infauna distribution and sediment type distribution in Bogue Sound, North Carolina. Ph.D. Dissertation, University of North Carolina, Chapel Hill, North Carolina.Google Scholar
  5. Cammen, L. M. 1979. The macro-infauna of a North Carolina salt marsh.The American Midland Naturalist 102:244–253.CrossRefGoogle Scholar
  6. Cerame-Vivas, M. J. andI. E. Gray 1966. The distributional pattern of benthic invertebrates off the continental shelf of North Carolina.Ecology 47:261–270.CrossRefGoogle Scholar
  7. Chester, A. J., R. L. Ferguson, andG. W. Thayer. 1983. Environmental gradients and benthic macroinvertebrate distributions in a shallow North Carolina estuary.Bulletin of Marine Science 33:282–295.Google Scholar
  8. Clark, K. R. andR. M. Warwick. 1994. Change in marine communities: An approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth, U.K.Google Scholar
  9. Day, J. H., J. G. Field, andM. P. Montgomery. 1971. The use of numerical methods to determine the distribution of benthic fauna across the continental shelf of North Carolina.Journal of Animal Ecology 40:93–125.CrossRefGoogle Scholar
  10. Diaz, R. J. andR. Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna.Oceanography and Marine Biology: An Annual Review 33:245–303.Google Scholar
  11. Engle, V. D., J. K. Summers, andG. R. Gaston. 1994. A benthic index of environmental condition of Gulf of Mexico estuaries.Estuaries 17:372–384.CrossRefGoogle Scholar
  12. Green, R. H. andG. L. Vascotto. 1978. A method for the analysis of environmental factors controlling patterns of species composition in aquatic communities.Water Research 12:583–590.CrossRefGoogle Scholar
  13. Hayek, L. C. andM. A. Buzas. 1997. Surveying Natural Populations. Columbia University Press, New York.Google Scholar
  14. Holland, A. F. (ed.). 1990. Near coastal program plan for 1990: Estuaries. Environmental Protection Agency 600/4-90/033. Office of Research and Development, Narragansett, Rhode Island.Google Scholar
  15. Hyland, J. L., L. Balthis, C. T. Hackney, G. McRae, A. H. Ringwood, T. R. Snoots, R. F. Van Dolah, andT. L. Wade. 1998a. Environmental quality of estuaries of the Carolinian Province: 1995. National Oceanic and Atmospheric Administration Technical Memorandum NOS ORCA 123. National Ocean Service, Silver Spring, Maryland.Google Scholar
  16. Hyland, J. L., L. Balthis, C. T. Hackney, andM. Posey. 2000. Sediment quality of North Carolina estuaries: An integrative assessment of sediment contamination, toxicity, and condition of benthic fauna.Journal of Aquatic Ecosystem Stress and Recovery 8:107–124.CrossRefGoogle Scholar
  17. Hyland, J., E. Baptiste, J. Campbell, J. Kennedy, R. Kropp, andS. Williams. 1991. Macroinfaunal communities of the Santa Maria Basin on the California outer continental shelf and slope.Marine Ecology Progress Series 78:147–161.CrossRefGoogle Scholar
  18. Hyland, J. L., E. J. Hoffman, andD. K. Phelps. 1985. Differential responses of two nearshore infaunal assemblages to experimental petroleum additions.Journal of Marine Research 43: 365–394.Google Scholar
  19. Hyland, J. L., T. R. Snoots, andW. L. Balthis. 1998b. Sediment quality of estuaries in the southeastern U.S.Environmental Monitoring and Assessment 51:331–343.CrossRefGoogle Scholar
  20. Hyland, J. L., R. F. Van Dolah, andT. R. Snoots. 1999. Predicting stress in benthic communities of southeastern U.S. estuaries in relation to chemical contamination of sediments.Environmental Toxicology and Chemistry 18:2557–2564.CrossRefGoogle Scholar
  21. Krebs, C. J. 1998. Ecological Methodology, 2nd edition. Pearson Benjamin Cummings, Menlo Park, California.Google Scholar
  22. Lenihan, H. S. andC. H. Peterson. 1998. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs.Ecological Applications 8:128–140.CrossRefGoogle Scholar
  23. Llanso, R. J., L. C. Scott, D. M. Dauer, J. L. Hyland, andD. E. Russell. 2002a. An estuarine benthic index of biotic integrity for the Mid-Atlantic region of the United States. I. Classification of assemblages and habitat definition.Estuaries 25: 1219–1230.CrossRefGoogle Scholar
  24. Llanso, R. J., L. C. Scott, J. L. Hyland, D. M. Dauer, D. E. Russell, andF. W. Kutz. 2002b. An estuarine benthic index of biotic integrity for the Mid-Atlantic region of the United States. II. Index development.Estuaries 25:1231–1242.CrossRefGoogle Scholar
  25. Long, E. R., L. J. Field, andD. D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines.Environmental Toxicology and Chemistry 17:714–727.CrossRefGoogle Scholar
  26. Long, E. R., D. D. MacDonald, S. L. Smith, andF. D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments.Environmental Management 19:81–97.CrossRefGoogle Scholar
  27. Mallin, M. A., J. M. Burkholder, L. B. Cahoon, andM. H. Posey. 2000. North and South Carolina coasts.Marine Pollution Bulletin 41:56–75.CrossRefGoogle Scholar
  28. Pearson, T. H. andR. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment.Oceanography and Marine Biology Annual Review 16:229–31.Google Scholar
  29. Posey, M. H. andW. G. Ambrose, Jr. 1994. Effects of proximity to an offshore hard-bottom reef on infaunal abundances.Marine Biology 118:745–753.CrossRefGoogle Scholar
  30. SAS Institute, Inc. 2000. SAS Online Doc, Version 8. SAS, Cary, North Carolina.Google Scholar
  31. Shannon, C. E. 1948. A mathematical theory of communication.Bell System Technical Journal 27:379–423, 623–656.Google Scholar
  32. Sneath, P. H. A. andR. R. Sokal. 1973. Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H. Freeman, San Francisco, California.Google Scholar
  33. Tenore, K. R. 1972. Macrobenthos of the Pamlico River estuary, North Carolina.Ecological Monographs 42:51–69.CrossRefGoogle Scholar
  34. U.S. Environmental Protection Agency (EPA). 2000. Ambient aquatic life water criteria for dissolved oxygen (saltwater): Cape Cod to Cape Hatteras. EPA 822-R-00-012. Environmental Protection Agency, Office of Water, Washington, D.C.Google Scholar
  35. U.S. Environmental Protection Agency (EPA). 2002. Environmental Monitoring and Assessment Program, Research Strategy. 620/R-02/002. Environmental, Washington, D.C.Google Scholar
  36. Van Dolah, R. F., J. L. Hyland, A. F. Holland, J. S. Rosen, andT. R. Snoots. 1999. A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern USA.Marine Environmental Research 48:269–283.CrossRefGoogle Scholar
  37. Weisberg, S. B., J. A. Ranasinghe, D. M. Dauer, L. C. Schaffner, R. J. Diaz, andJ. B. Frithsen. 1997. An estuarine benthic index of biotic integrity (B-IBI) for Chesapeake Bay.Estuaries 20:149–158.CrossRefGoogle Scholar
  38. Weston, D. P. 1988. Macrobenthos-sediment relationships on the continental shelf off Cape Hatteras, North Carolina.Continental Shelf Research 8:267–286.CrossRefGoogle Scholar
  39. Williams, W. T. andJ. M. Lambert. 1961. Nodal analysis of associated populations.Nature 191:202.CrossRefGoogle Scholar

Source of Unpublished Materials

  1. Gallagher, E. Unpublished data. University of Massachusetts at Boston. 100 Morrissey Boulevard, Boston, Massachusetts. <>Google Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  • Jeffrey L. Hyland
    • 1
  • W. Leonard Balthis
    • 1
  • Martin Posey
    • 2
  • Courtney T. Hackney
    • 2
  • Troy Alphin
    • 2
  1. 1.National Ocean ServiceNational Oceanic and Atmospheric AdministrationCharleston
  2. 2.Department of Biological SciencesUniversity of North Carolina at WilmingtonWilmington

Personalised recommendations