Advertisement

Israel Journal of Mathematics

, Volume 118, Issue 1, pp 221–288 | Cite as

Scaling limits of loop-erased random walks and uniform spanning trees

  • Oded Schramm
Article

Abstract

The uniform spanning tree (UST) and the loop-erased random walk (LERW) are strongly related probabilistic processes. We consider the limits of these models on a fine grid in the plane, as the mesh goes to zero. Although the existence of scaling limits is still unproven, subsequential scaling limits can be defined in various ways, and do exist. We establish some basic a.s. properties of these subsequential scaling limits in the plane. It is proved that any LERW subsequential scaling limit is a simple path, and that the trunk of any UST subsequential scaling limit is a topological tree, which is dense in the plane.

The scaling limits of these processes are conjectured to be conformally invariant in dimension 2. We make a precise statement of the conformal invariance conjecture for the LERW, and show that this conjecture implies an explicit construction of the scaling limit, as follows. Consider the Löwner differential equation
$$\frac{{\partial f}}{{\partial t}} = z\frac{{\zeta (t) + z}}{{\zeta (t) - z}}\frac{{\partial f}}{{\partial z}}$$
(1)
, with boundary valuesf(z,0)=z, in the rangezU= {w ∈ ℂ : •w• < 1},t≤0. We choose ζ(t):=B(−2t), where B(t) is Brownian motion on ∂\( \mathbb{U} \) starting at a random-uniform point in ∂\( \mathbb{U} \). Assuming the conformal invariance of the LERW scaling limit in the plane, we prove that the scaling limit of LERW from 0 to ∂\( \mathbb{U} \) has the same law as that of the pathf(t),t) (wheref(z,t) is extended continuously to ∂\( \mathbb{U} \)) ×(−∞,0]). We believe that a variation of this process gives the scaling limit of the boundary of macroscopic critical percolation clusters.

Keywords

Span Tree Conformal Invariance Scaling Limit Simple Path Simple Random Walk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Aiz] M. Aizenman,Continuum limits for critical percolation and other stochastic geometric models, Preprint. http://xxx.lanl.gov/abs/math-ph/9806004.Google Scholar
  2. [ABNW] M. Aizenman, A. Burchard, C. M. Newman and D. B. Wilson,Scaling limits for minimal and random spanning trees in two dimensions, Preprint. http://xxx.lanl.gov/abs/math/9809145.Google Scholar
  3. [ADA] M. Aizenman, B. Duplantier and A. Aharony,Path crossing exponents and the external perimeter in 2D percolation, Preprint. http://xxx.lanl.gov/abs/cond-mat/9901018.Google Scholar
  4. [Ald90] D. J. Aldous,The random walk construction of uniform spanning trees and uniform labelled trees, SIAM Journal on Discrete Mathematics3 (1990), 450–465.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [Ben] I. Benjamini,Large scale degrees and the number of spanning clusters for the uniform spanning tree, inPerplexing Probability Problems: Papers in Honor of Harry Kesten (M. Bramson and R. Durrett, eds.), Boston, Birkhäuser, to appear.Google Scholar
  6. [BLPS98] I. Benjamini, R. Lyons, Y. Peres and O. Schramm,Uniform spanning forests, Preprint. http://www.wisdom.weizmann.ac.il/≈schramm/papers/usf/.Google Scholar
  7. [BJPP97] C. J. Bishop, P. W. Jones, R. Pemantle and Y. Peres,The dimension of the Brownian frontier is greater than 1, Journal of Functional Analysis143 (1997), 309–336.zbMATHCrossRefMathSciNetGoogle Scholar
  8. [Bow] B. H. Bowditch,Treelike structures arising from continua and convergence groups, Memoirs of the American Mathematical Society, to appear.Google Scholar
  9. [Bro89] A. Broder,Generating random spanning trees, in30th Annual Symposium on Foundations of Computer Science, IEEE, Research Triangle Park, NC, 1989, pp. 442–447.CrossRefGoogle Scholar
  10. [BP93] R. Burton and R. Pemantle,Local characteristics, entropy and limit theorems for spanning trees and domino tilings via transfer-impedances, The Annals of Probability21 (1993), 1329–1371.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Car92] J. L. Cardy,Critical percolation in finite geometries, Journal of Physics A25 (1992), L201-L206.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [DD88] B. Duplantier and F. David,Exact partition functions and correlation functions of multiple Hamiltonian walks on the Manhattan lattice, Journal of Statistical Physics51 (1988), 327–434.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [Dur83] P. L. Duren,Univalent Functions, Springer-Verlag, New York, 1983.zbMATHGoogle Scholar
  14. [Dur84] R. Durrett,Brownian Motion and Martingales in Analysis, Wadsworth International Group, Belmont, California, 1984.zbMATHGoogle Scholar
  15. [Dur91] R. Durrett,Probability, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1991.zbMATHGoogle Scholar
  16. [EK86] S. N. Ethier and T. G. Kurtz,Markov Processes, Wiley, New York, 1986.zbMATHGoogle Scholar
  17. [Gri89] G. Grimmett,Percolation, Springer-Verlag, New York, 1989.zbMATHGoogle Scholar
  18. [Häg95] O. Häggström,Random-cluster measures and uniform spanning trees, Stochastic Processes and their Applications59 (1995), 267–275.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [Itô61] K. Itô,Lectures on Stochastic Processes, Notes by K. M. Rao, Tata Institute of Fundamental Research, Bombay, 1961.Google Scholar
  20. [Jan12] Janiszewski, Journal de l'Ecole Polytechnique16 (1912), 76–170.Google Scholar
  21. [Ken98a] R. Kenyon,Conformal invariance of domino tiling, Preprint. http://topo.math.u-psud.fr/≈kenyon/confinv.ps.Z.Google Scholar
  22. [Ken98b] R. Kenyon,The asymptotic determinant of the discrete laplacian, Preprint. http://topo.math.u-psud.fr/≈kenyon/asymp.ps.Z.Google Scholar
  23. [Ken99] R. Kenyon,Long-range properties of spanning trees, Preprint.Google Scholar
  24. [Ken] R. Kenyon, in preparation.Google Scholar
  25. [Kes87] H. Kesten,Hitting probabilities of random walks on ℤ d, Stochastic Processes and their Applications25 (1987), 165–184.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [Kuf47] P. P. Kufarev,A remark on integrals of Löwner's equation, Doklady Akademii Nauk SSSR (N.S.)57 (1947), 655–656.zbMATHMathSciNetGoogle Scholar
  27. [LPSA94] R. Langlands, P. Pouliot and Y. Saint-Aubin,Conformal invariance in twodimensional percolation, Bulletin of the American Mathematical Society (N.S.)30 (1994), 1–61.zbMATHMathSciNetGoogle Scholar
  28. [Law93] G. F. Lawler,A discrete analogue of a theorem of Makarov, Combinatorics, Probability and Computing2 (1993), 181–199.zbMATHMathSciNetCrossRefGoogle Scholar
  29. [Law] G. F. Lawler,Loop-erased random walk, inPerplexing Probability Problems: Papers in Honor of Harry Kesten (M. Bramson and R. Durrett, eds.), Boston, Birkhäuser, to appear.Google Scholar
  30. [Löw23] K. Löwner,Untersuchungen über schlichte konforme abbildungen des einheitskreises, I, Mathematische Annalen89 (1923), 103–121.CrossRefMathSciNetzbMATHGoogle Scholar
  31. [Lyo98] R. Lyons, A bird's-eye view of uniform spanning trees and forests, inMicrosurveys in Discrete Probability (Princeton, NJ, 1997), American Mathematical Society, Providence, RI, 1998, pp. 135–162.Google Scholar
  32. [MR] D. E. Marshall and S. Rohde, in preparation.Google Scholar
  33. [MMOT92] J. C. Mayer, L. K. Mohler, L. G. Oversteegen and E. D. Tymchatyn,Characterization of separable metric ℝ-trees, Proceedings of the American Mathematical Society115 (1992), 257–264.zbMATHCrossRefMathSciNetGoogle Scholar
  34. [MO90] J. C. Mayer and L. G. Oversteegen,A topological characterization of ℝ-trees, Transactions of the American Mathematical Society320 (1990), 395–415.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [New92] M. H. A. Newman,Elements of the Topology of Plane Sets of Points, second edition, Dover, New York, 1992.zbMATHGoogle Scholar
  36. [Pem91] R. Pemantle,Choosing a spanning tree for the integer lattice uniformly, The Annals of Probability19 (1991), 1559–1574.zbMATHCrossRefMathSciNetGoogle Scholar
  37. [Pom66] C. Pommerenke,On the Loewner differential equation, The Michigan Mathematical Journal13 (1966), 435–443.zbMATHCrossRefMathSciNetGoogle Scholar
  38. [Rus78] L. Russo,A note on percolation, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete43 (1978), 39–48.zbMATHCrossRefGoogle Scholar
  39. [SD87] H. Saleur and B. Duplantier,Exact determination of the percolation hull exponent in two dimensions, Physical Review Letters58 (1987), 2325–2328.CrossRefMathSciNetGoogle Scholar
  40. [Sch] O. Schramm, in preparation.Google Scholar
  41. [Sla94] G. Slade,Self-avoiding walks, The Mathematical Intelligencer16 (1994), 29–35.zbMATHMathSciNetGoogle Scholar
  42. [SW78] P. D. Seymour and D. J. A. Welsh,Percolation probabilities on the square lattice, inAdvances in Graph Theory (Cambridge Combinatorial Conference, Trinity College, Cambridge, 1977), Annals of Discrete Mathematics3 (1978), 227–245.Google Scholar
  43. [TW98] B. Tóth and W. Werner,The true self-repelling motion, Probability Theory and Related Fields111 (1998), 375–452.zbMATHCrossRefMathSciNetGoogle Scholar
  44. [Wil96] D. B. Wilson,Generating random spanning trees more quickly than the cover time, inProceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), ACM, New York, 1996, pp. 296–303.CrossRefGoogle Scholar

Copyright information

© Hebrew University 2000

Authors and Affiliations

  1. 1.Department of MathematicsThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations