Estuaries

, Volume 27, Issue 6, pp 1014–1025 | Cite as

Optimal benthic macrofaunal sampling protocol for detecting differences among four habitats in Willapa Bay, Washington, USA

Article

Abstract

As part of an effort to estimate estuarine habitat values with respect to ecological indicators of benthic macrofaunal community condition, an optimal (effective and least costly) sampling protocol (sample unit size [area x depth], sieve mesh size, and sample number [n]) was determined. The goal was to use four ecological indicators (number of species, abundance, biomass, and fish and crab prey abundance) to detect differences among four intertidal habitats in Willapa Bay, Washington, United States. The four habitats were eelgrass (Zostera marina), Atlantic cordgrass (Spartina alterniflora), mud shrimp (Upogebia pugettensis), and ghost shrimp (Neotrypaea californiensis). Four sample unit areas (0.005, 0.010, 0.015, and 0.020 m2), two sample unit depths (0–5 and 0–10 cm), and two sieve mesh sizes (1.0 and 0.5 mm) were evaluated. The optimal sampling protocol was defined as the least costly protocol capable of reliably (statistical power, 1−β≥0.80) detecting significant (α=0.05) differences among ≥4 of the 6 pairwise habitat contrasts by ANOVA on all four ecological indicators. The relative cost of each sampling protocol was estimated as a direct function of the sample unit size and number and the cost-in-processing-time ratios of 1 (5 cm deep):1.7 (10 cm deep) and 1 (≥1.0 mm macrofauna size fraction); 2.5 (≥0.5 mm macrofauna size fraction), which were taken from previous studies. The optimal sampling protocol was 15–20, 0.01-m2×5-cm deep, 0.5-mm mesh samples per habitat.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Albright, R. and P. K. Bouthillette. 1982. Benthic invertebrate studies in Grays Harbor, Washington, U.S. Army Corps of Engineers, Contract No. DACW67-80-C-0091. Seattle, Washingon.Google Scholar
  2. Allee, R. J., M. Dethier, D. Brown, L. Deegan, R. G. Ford, T. F. Hourigan, J. Maragos, C. Schoch, K. Sealey, R. Twilley, M. P. Weinstein, and M. Yoklavich. 2000. Marine and estuarine ecosystem and habitat classification. NOAA-Fisheries, National Oceanic and Atmospheric Administration Technical Memorandum NMFS-F/SPO-43. Silver Spring, Maryland.Google Scholar
  3. Andrew, N. L. andB. D. Mapstone. 1987. Sampling and the description of spatial pattern in marine ecology.Oceanography and Marine Biology. An Annual Review 25:39–90.Google Scholar
  4. Bachelet, G. 1990. The choice of a sieving mesh size in the quantitative assessment of marine macrobenthos: A necessary compromise between aims and constraints.Marine Environmental Research 30:21–35.CrossRefGoogle Scholar
  5. Bayer, R. D. 1981. Shallow-water intertidal ichthyofauna of the Yaquina estuary, Oregon.Northwest Science 55:182–193.Google Scholar
  6. Blundon, J. A. andV. S. Kennedy. 1982. Refuges for infaunal bivalves from blue crab,Callinectes sapidus (Rathbun), predation in Chesapeake Bay.Journal of Experimental Marine Biology and Ecology 65:67–81.CrossRefGoogle Scholar
  7. Boesch, D. F. 1977. Application of numerical classification in ecological investigations of water pollution. U.S. Environmental Protection Agency, Ecological Research Series, EPA-600/3-77-033. Washington, D.C.Google Scholar
  8. Boström, C. B. andE. Bonsdorff. 1997. Community structure and spatial variation of benthic invertebrates associated withZostera marina (L.) beds in the northern Baltic Sea.Journal of Sea Research 37:153–166.CrossRefGoogle Scholar
  9. Bottom, D. L. andK. K. Jones. 1990. Species composition, distribution, and invertebrate prey of fish assemblages in the Columbia River estuary.Progress in Oceanography 25:243–270.CrossRefGoogle Scholar
  10. Bowden, D. A., A. A. Rowden, andM. J. Attrill. 2001. Effect of patch size and in-patch location on the infaunal macroinvertebrate assemblages ofZostera marina seagrass beds.Journal of Experimental Marine Biology and Ecology 259:133–154.CrossRefGoogle Scholar
  11. Buchanan, J. B. 1984. Sediment analysis, p. 41–65.In N. A. Holme and A. D. McIntyre (eds.), Methods for the Study of Marine Benthos, IBP Handbook No. 16, 2nd edition. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
  12. Castillo, G. C., T. W. Miller, J. W. Chapman, and H. W. Li. 1996. Non-indigenous species cause major shifts in the foodbase of estuarine-dependent fishes, p. 101–109.In D. Mackinlay and K. Shearer (eds.), Gutshop '96. Feeding Ecology and Nutrition in Fish. Symposium Proceedings. International Congress on the Biology of Fish. San Francisco, California.Google Scholar
  13. Cochran, W. G. 1977. Sampling Techniques, 3rd edition. John Wiley and Sons, New York.Google Scholar
  14. Cohen, J. 1988. Statistical Power Analysis for the Behavioral Science, revised edition. Academic Press, Orlando, Florida.Google Scholar
  15. DeBen, W. A., W. D. Clothier, G. R. Ditsworth, andD. J. Baumgartner. 1990. Spatio-temporal fluctuations in the distribution and abundance of demersal fish and epibenthic crustaceans in Yaquina Bay, Oregon.Estuaries 13:469–478.CrossRefGoogle Scholar
  16. Diaz-Ramos, S., D. L. Stevens, Jr., and A. R. Olsen. 1996. Environmental Monitoring and Assessment Program. U.S. Environmental Protection Agency EMAP Statistical Methods Manual EPA/620/R-96/002. Corvallis, Oregon.Google Scholar
  17. Downing, J. A. 1979. Aggregation, transformation, and the design of benthos sampling programs.Journal of the Fisheries Research Board of Canada 36:1454–1463.Google Scholar
  18. Dumbauld, B. R., K. M. Brooks, andM. H. Posey. 2001. Response of an estuarine benthic community to application of the pesticide carbaryl and cultivation of Pacific oysters (Crassostrea gigas) in Willapa Bay, Washington.Marine Pollution Bulletin 42:826–844.CrossRefGoogle Scholar
  19. Eleftheriou, A. andN. A. Holme. 1984. Macrofaunal techniques, p. 140–216.In N. A. Holme and A. D. McIntyre (eds.), Methods for the Study of Marine Benthos, IBP Handbook No. 16, 2nd edition. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
  20. Elliott, J. M. 1983. Some Methods for the Statistical Analyses of Samples of Benthic Invertebrates, 2nd edition. 3rd impression. Freshwater Biological Association Scientific Publication No. 25, The Ferry House, U.K.Google Scholar
  21. Emmett, R. L., S. L. Stone, S. A. Hinton, andM. E. Monaco. 1991. Distribution and abundance of fishes and invertebrates in west coast estuaries, Volume II. Species Life history summaries. Strategic Environmental Assessments Division. ELMR Report No. 8. National Oceanic and Atmopsheric Administration, National Ocean Service. Rockville, Maryland.Google Scholar
  22. Ferraro, S. P., F. A. Cole, W. A. DeBen, andR. C. Swartz. 1989. Power-cost efficiency of eight macrobenthic sampling schemes in Puget Sound, Washington, USA.Canadian Journal of Fisheries and Aquatic Sciences 46:2157–2165.CrossRefGoogle Scholar
  23. Ferraro, S. P., R. C. Swartz, F. A. Cole, andW. A. DeBen. 1994. Optimum macrobenthic sampling protocol for detecting pollution impacts in the Southern California Bight.Environmental Monitoring and Assessment 29:127–153.CrossRefGoogle Scholar
  24. Furota, T. and R. L. Emmett. 1993. Seasonal changes in the intertidal and subtidal macrobenthic invertebrate community structure in Baker Bay, lower Columbia River estuary. U.S. Department of Commerce, National Oceanic and Atmospheric Administration Technical Memorandum NMFS-NWFSC-5. Springfield, Virginia.Google Scholar
  25. Gotshall, D. W. 1977. Stomach contents of Northern California Dungeness crabs,Cancer magister.California Fish and Game 63:43–51.Google Scholar
  26. Gray, J. S. 1981. The Ecology of Marine Sediments. Cambridge University Press, Cambridge, U.K.Google Scholar
  27. Green, R. H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. John Wiley and Sons, New York.Google Scholar
  28. Gunderson, D. R., D. A. Armstrong, Y.-B. Shi, andR. A. McConnaughey. 1990. Patterns of estuarine use by juvenile English sole (Parophrys vetulus) and Dungeness crab (Cancer magister).Estuaries 13:59–71.CrossRefGoogle Scholar
  29. Hall, S. J. 1994. Physical disturbance and marine benthic communities: Life in unconsolidated sediments.Oceanography and Marine Biology: An Annual Review 32:179–239.Google Scholar
  30. Hayes, J. P. andR. J. Steidl. 1997. Statistical power analysis and amphibian population trends.Conservation Biology 11:273–275.CrossRefGoogle Scholar
  31. Hedgpeth, J. W. and S. Obrebski. 1981. Willapa Bay: A historical perspective and a rationale for research. U.S. Fish and Wildlife Service FWS/OBS-81/03. Washington, D.C.Google Scholar
  32. Heltshe, J. F. andT. A. Ritchey. 1984. Spatial pattern detection using quadrat samples.Biometrics 40:877–885.CrossRefGoogle Scholar
  33. Hines, A. H. andK. L. Comtois. 1985. Vertical distribution of infauna in sediments of a subestuary of central Chesapeake Bay.Estuaries 8:296–304.CrossRefGoogle Scholar
  34. Holland, A. F., N. K. Mountford, M. H. Hiegel, K. R. Kaumeyer, andJ. A. Mihursky. 1980. Influence of predation on infaunal abundance in upper Chesapeake Bay, USA.Marine Biology 57:221–235.CrossRefGoogle Scholar
  35. Holme, N. A. 1964. Methods of sampling the benthos.Advances in Marine Biology 2:171–260.CrossRefGoogle Scholar
  36. Hunsaker, C. T. and D. E. Carpenter. 1990. Ecological indicators for the Environmental Monitoring and Assessment Program. U.S. Environmental Protection Agency EPA 600/3-90/060. Research Triangle Park, North Carolina.Google Scholar
  37. Jones, C. G., J. H. Lawton, andM. Shachak. 1994. Organisms as ecosystem engineers.Oikos 69:373–386.CrossRefGoogle Scholar
  38. McIntyre, A. D., J. M. Elliott, andD. V. Ellis. 1984. Introduction: Design of sampling programmes, p. 1–26.In N. A. Holme and A. D. McIntyre (eds.), Methods for the Study of Marine Benthos. IBP Handbook No. 16, 2nd edition. Blackwell Scientific Publications, Oxford, U.K.Google Scholar
  39. O'Brien, R. G. 1998. A tour of UnifyPow: A SAS module/macro for sample size analysis, p. 1346–1355. In Proceedings of the 23rd SAS Users Group International Conference. SAS Institute, Cary, North Carolina.Google Scholar
  40. Orth, R. J. 1973. Benthic infauna of eelgrass,Zostera marina beds.Chesapeake Science 14:258–269.CrossRefGoogle Scholar
  41. Pearson, T. H. andR. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment.Oceanography and Marine Biology: An Annual Review 16:229–311.Google Scholar
  42. Peterman, R. M. 1990. Statistical power analysis can improve fisheries research and management.Canadian Journal of Fisheries and Aquatic Scineces 47:2–15.CrossRefGoogle Scholar
  43. Plumb, R. H. 1981. Procedures for handling and chemical analyses of sediment and water samples. U.S. Army Engineers Waterways Experiment Station Technical Report EPACE-81-1. Vicksburg, Mississippi.Google Scholar
  44. Posey, M. H. 1986. Changes in a benthic community associated with dense beds of a burrowing deposit feeder,Callianassa californiensis.Marine Ecology Progress Series 31:15–22.CrossRefGoogle Scholar
  45. Posey, M. H., B. R. Dumbauld, andD. A. Armstrong. 1991. Effects of a burrowing mud shrimp,Upogebia pugettensis (Dana), on abundances of macro-infauna.Journal of Experimental Marine Biology and Ecology 148:283–294.CrossRefGoogle Scholar
  46. Puget Sound Estuary Program. 1997. Recommended protocols for sampling and analyzing subtidal benthic macroinvertebrate assemblages in Puget Sound. Recommended Protocols for Measuring Selected Environmental Variables in Puget Sound. Puget Sound Water Quality Authority, Olympia, Washington.Google Scholar
  47. Rader, D. N. 1984. Salt-marsh benthic invertebrates: Small-scale paterns of distribution and abundance,Estuaries 7:413–420.CrossRefGoogle Scholar
  48. Rees, H. L. 1984. A note on mesh selection and sampling efficiency in benthic studies.Marine Pollution Bulletin 15:225–229.CrossRefGoogle Scholar
  49. Reise, K. 1985. Tidal Flat Ecology. Springer-Verlag, Heidelberg, Germany.Google Scholar
  50. SAS Institute Inc. 1985. SAS User's Guide: Basics, Version 5 edition. SAS Institute Inc., Cary, North Carolina.Google Scholar
  51. Service, S. K. andR. J. Feller. 1992. Long-term trends of subtidal macrobenthos in North Inlet, South Carolina.Hydrobiologia 231:13–40.CrossRefGoogle Scholar
  52. Simenstad, C. A., C. D. Tanner, and R. M. Thom. 1990. Estuarine wetland restoration monitoring protocol: Appendices. U.S. Environmental Protection Agency FRI-UW-89. Seattle, Washington.Google Scholar
  53. Simenstad, C. A., C. D. Tanner, R. M. Thom, and L. L. Conquest. 1991. Estuarine habitat assessment protocol. U.S. Environmental Protection Agency EPA 910/9-91-037. Seattle, Washington.Google Scholar
  54. Simpson, G. G., A. Roe, andR. C. Lewontin. 1960. Quantitative Zoology, revised edition. Harcourt, Brace and World, New York.Google Scholar
  55. Sokal, R. R. andF. J. Rohlf. 1995. Biometry. The Principles and Practice of Statistics in Biological Research, 3rd edition. W. H. Freeman and Company, New York.Google Scholar
  56. Stevens, Jr.,D. L. 1997. Variable density grid-based sampling designs for continuous spatial populations.Environmetrics 8: 167–195.CrossRefGoogle Scholar
  57. Stickney, R. R., G. L. Taylor, andD. B. White. 1975. Food habits of five species of young southeastern United States estuarine Sciaenidae.Chesapeake Science 16:104–114.CrossRefGoogle Scholar
  58. Swartz, R. C. 1978. Techniques for sampling and analyzing the marine macrobenthos. U.S. Environmental Protection Agency EPA-600/3-78-030. Corvallis, Oregon.Google Scholar
  59. Toft, C. A. andP. J. Shea. 1983. Detecting community-wide patterns: Estimating power strengthens statistical inference.American Naturalist 122:618–625.CrossRefGoogle Scholar
  60. U.S. Environmental Protection Agency (USEPA). 1991. Monitoring Guidance for the National Estuary Program, Interim Final. U.S. Environmental Protection Agency EPA 503/8-91-002. Washington, D.C.Google Scholar
  61. U.S. Environmental Protection Agency (USEPA). 1998. Guidelines for Ecological Risk Assessment, Risk Assessment Forum. U.S. Environmental Protection Agency, EPA/630/R-95/002F. Washington, D.C.Google Scholar
  62. Warwick, R. M. andK. R. Clarke. 1991. A comparison of some methods for analysing changes in benthic community structure.Journal of the Marine Biological Association U.K. 71:225–244.Google Scholar
  63. Williams, S. L. and J. B. Zedler. 1992. Restoring sustainable coastal ecosystems on the Pacific Coast. Establishing a research agenda. California Sea Grant College, University of California, Report No. T-CSGCP-026. La Jolla, California.Google Scholar
  64. Zipperer, V. T. 1996. Ecological effects of the introduced cordgrass,Spartina alterniflora, on the benthic community structure of Willapa Bay, Washington, M.S. Thesis, University of Washington, Seattle, Washington.Google Scholar

Copyright information

© Estuarine Research Federation 2004

Authors and Affiliations

  1. 1.Hatfield Marine Science CenterU.S. Environmental Protection AgencyNewport

Personalised recommendations