Skip to main content
Log in

Changes in dissolved organic matter characteristics in Chincoteague Bay during a bloom of the pelagophyteAureococcus anophagefferens

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

Aureococcus anophagefferens, the pelagophyte responsible for brown tide blooms, occurs in coastal bays along the northeast coast of the United States. This species was identified in Chincoteague Bay, Maryland, in 1997 and has bloomed there since at least 1998. Time series of dissolved organic matter (DOM) concentrations and characteristics are presented for two sites in Chincoteague Bay: one that experienced a brown tide bloom in 2002 and one that did not. Characteristics of the bulk DOM pool were obtained using dissolved organic carbon (DOC) and ultraviolet-visible (UV-Vis) measurements (spectral slope and specific UV absorbance). High molecular weight DOM (HMW-DOM) was characterized in terms of DOC concentration, carbon: nitrogen (C:N) ratio, isotopic signature, and molecular-level characteristics as determined by direct temperature resolved mass spectrometry (DT-MS). Compositional changes in the DOM pool are associated with brown tide blooms, although a direct relationship between DOM characteristics and bloom development could not be confirmed. DOC measurements suggest that during the brown tide bloom, HMW-DOM was released into the surface water. UV-Vis analysis on the bulk DOM and molecular-level characterization of the HMW-DOM using DT-MS show that this material was optically active and more aromatic in nature. Based upon C:N ratio and HMW-DOC measurements, it appears that this HMW-DOM was more nitrogen enriched. Whether this material was released as exudates or was due to lysis ofA. anophagefferens could not be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Benner, R. 1991. Ultrafiltration for the concentration of bacteria, viruses, and dissolved organic matter, p. 181–186.In D. C. Hurd and D. W. Spencer (eds.), The Analysis and Characterization of Marine Particles. Geophysical Monograph 63. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Benner, R. 2002. Chemical composition and reactivity, p. 59–90.In D. Hansell and C. Carlson (eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, California.

    Chapter  Google Scholar 

  • Benner, R., B. Biddanda, B. Black, andM. McCarthy. 1997. Abundance, size distribution, and stable carbon and nitrogen isotopic compositions of marine organic matter isolated by tangential-flow ultrafiltration.Marine Chemistry 57:243–263.

    Article  CAS  Google Scholar 

  • Berg, G. M., P. M. Glibert, M. W. Lomas, andM. A. Burford. 1997. Organic nitrogen uptake and growth by the chrysophyteAureococcus anophagefferens during a brown tide event.Marine Biology 129:377–387.

    Article  CAS  Google Scholar 

  • Berg, G. M., D. J. Repeta, andJ. LaRoche. 2003. The role of the picoeukaryoteAureococcus anophagefferens in cycling of marine high-molecular weight dissolved organic nitrogen.Limnology and Oceanography 48:1825–1830.

    CAS  Google Scholar 

  • Blough, N. V. andR. Del Vecchio. 2002. Chromophoric DOM in the coastal environment, p. 509–546.In D. Hansell and C. Carlson (eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, California.

    Chapter  Google Scholar 

  • Boon, J. J. 1992. Analytical pyrolysis mass spectrometry: New vistas opened by temperature-resolved in-source PYMS.International Journal of Mass Spectrometry and Ion Processes 118/119:755–787.

    Article  Google Scholar 

  • Bricelj, V. M. andD. J. Lonsdale. 1997.Aureococcus anophagefferens: Causes and ecological consequences of brown tides in the U.S. mid-Atlantic coastal waters.Limnology and Oceanography 42:1023–1038.

    Google Scholar 

  • Brumbauugh, R. D. 1996. Recruitment of blue crab,Callinected sapidus, postlarvae to the back-barrier lagoons of Virginia's Eastern Shore. Ph.D. Dissertation, Department of Oceanography, College of Sciences, Old Dominion University, Norfolk, Virginia.

    Google Scholar 

  • Burdige, D. J. andJ. Homstead. 1994. Fluxes of dissolved organic carbon from Chesapeake Bay sediments.Geochimica Cosmochimica Acta 58:3407–3424.

    Article  CAS  Google Scholar 

  • Cerco, C. F., C. S. Fang, andA. Rosenbaum. 1978. Intensive hydrographical and water quality survey of the Chincoteague/Sinepuxent/Assawoman Bay systems, Volume III. Non-point source pollution studies in the Chincoteague Bay system. Maryland Water Resources Administration, Special scientific report No. 86. Virginia Institute of Marine Science, Gloucester Point, Virginia.

    Google Scholar 

  • Chin, Y. P., G. Aiken, andE. O'Loughlin. 1994. Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances.Environmental Science and Technology 28:1853–1858.

    Article  CAS  Google Scholar 

  • Cosper, E. M., C. Lee, andE. J. Carpenter. 1990. Novel “brown tide” blooms in Long Island embayments: A search for the causes, p. 17–28.In E. Graneli, B. Sundstrom, L. Edler, and D. M. Anderson (eds.), Toxic Marine Phytoplankton: Proceedings of the Fourth International Conference on Toxic Marine Phytoplankton, Elsevier, New York.

    Google Scholar 

  • Davis, J. C. 1986. Statistics and Data Analysis in Geology, 2nd edition. Wiley, New York.

    Google Scholar 

  • Dillow, J. J. A., W. S. L. Banks, and M. J. Smigaj. 2002. Groundwater quality and discharge to chincoteague and Sinepuxent Bays adjacent to Assateague Island National Seashore, Maryland. U.S. Department of the Interior, U.S. Geological Survey, Water-Resources Investigations Report 02-4029. Baltimore, Maryland.

  • Dzurica, S., C. Lee, E. M. Cosper, andE. J. Carpenter. 1989. Role of environmental variables, specifically organic compounds and micronutrients, in the growth of the chysophyteAureococcus anophagefferens, p. 229–252.In E. M. Cosper, V. M. Bricelj, and E. J. Carpenter (eds.), Novel Phytoplankton Blooms: Causes and Impacts of Recurrent Brown Tides and Other Unusual Blooms, Volume 35. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Eglinton, T. I., J. J. Boon, E. C. Minor, andR. J. Olson. 1996. Microscale characterization of algal and related particulate organic matter by direct temperature-resolved mass spectrometry.Marine Chemistry 52:27–54.

    Article  Google Scholar 

  • Garry, R. T., P. Hearing, andE. M. Cosper. 1998. Characterization of a lytic virus infectious to the bloom-forming microalgaAureococcus anophagefferens (Pelagophyceae).Journal of Phycology 34:616–621.

    Article  Google Scholar 

  • Gastrich, M. D., O. R. Anderson, S. S. Benmayor, andE. M. Cosper. 1998. Ultrastructural analysis of viral infection in the brown-tide alga,Aureococcus anophagefferens (Pelagophyceae).Phycologia 37:300–306.

    Article  Google Scholar 

  • Glibert, P. M., R. Magnien, M. W. Lomas, J. Alexander, C. Fan, E. Haramoto, M. Trice, andT. M. Kana. 2001. Harmful algal blooms in the Chesapeake and Coastal Bays of Maryland, USA: Comparison of 1997, 1998, and 1999 events.Estuaries 24:875–883.

    Article  CAS  Google Scholar 

  • Gobler, C. J., D. A. Hutchins, N. S. Fisher, E. M. Cosper, andS. A. Sanudo-Wilhelmy. 1997. Release and bioavailability of C, N, P, Se, and Fe following viral lysis of a marine chrysophyte.Limnology and Oceanography 42:1492–1504.

    CAS  Google Scholar 

  • Gobler, C. J., M. J. Renaghan, andN. J. Buck. 2002. Impacts of nutrient and grazing mortality on the abundance ofAureococcus anophagefferens during a New York brown tide bloom.Limnology and Oceanography 47:129–141.

    Google Scholar 

  • Gobler, C. J. andS. A. Sanudo-Wilhelmy. 2001. Effects of organic carbon, organic nitrogen, inorganic nutrients, and iron additions on the growth of phytoplankton and bacteria during a brown tide bloom.Marine Ecology Progress Series 209:19–34.

    Article  CAS  Google Scholar 

  • Guo, L. andP. H. Santschi. 1997. Composition and cycling of colloids in marine environment.Review of Geophysics 35:17–40.

    Article  CAS  Google Scholar 

  • Guo, L., P. H. Santschi, L. A. Cifuentes, S. E. Trumbore, andJ. Southon. 1996. Cycling of high-molecular-weight dissolved organic isotopic (13C and14C) signatures.Limnology and Oceanography 41:1242–1252.

    Article  CAS  Google Scholar 

  • Hayes, J. M., D. J. DesMarais, D. W. Peterson, D. A. Schoeller, andS. P. Taylor. 1978. High precision stable isotope ratios from microgram samples.Advances in Mass Spectrometry 7:475–480.

    Google Scholar 

  • Hoogerbrugge, R., S. J. Willig, andP. G. Kistemaker. 1983. Discriminant analysis by double stage principle component analysis.Analytical Chemistry 55:1710–1712.

    Article  CAS  Google Scholar 

  • Keller, A. A. andR. L. Rice. 1989. Effects of nutrient enrichment on natural populations of the brown tide phytoplanktonAureococcus anophagefferens (Chrysophyceae).Journal of Phycology 25:636–646.

    Article  Google Scholar 

  • Klap, V. A. 1997. Biogeochemical aspects of salt marsh exchange processes in the SW Netherlands. Ph.D. Dissertation, Nederlands Instituut voor Oecologisch Onderzoek/Centrum voor Estuarine and Marine Onderzoek, Yerseke, Netherlands.

    Google Scholar 

  • Lomas, M. W., P. M. Glibert, D. A. Clougherty, D. R. Huber, J. Jones, J. Alexander, andE. Haramoto. 2001. Elevated organic nutrient ratios associated with brown tide algal blooms ofAureococcus anophagefferens (Pelagophyceae).Journal of Plankton Research 23:1339–1344.

    Article  Google Scholar 

  • Mannino, A. andH. R. Harvey. 2000. Biochemical composition of particles and dissolved organic matter along an estuarine gradient: Sources and implications for DOM reactivity.Limnology and Oceanography 45:775–788.

    CAS  Google Scholar 

  • Mariotti, A. 1983. Atmospheric nitrogen is a reliable standard for natural15N abundance measurements.Nature 303:685–687.

    Article  CAS  Google Scholar 

  • Minor, E. C. 1998. Compositional heterogeneity within oceanic POM: A case study using flow cytometry and mass spectrometry. Ph.D. Dissertation, Massachusetts Institute of Technology/Woods Hole Oceanographic Institute, Woods Hole, Massachusetts.

    Google Scholar 

  • Minor, E. C. andT. I. Eglinton. 1999. Molecular-level variations in particular organic matter subclasses along the Mid-Atlantic Bight.Marine Chemistry 67:103–122.

    Article  CAS  Google Scholar 

  • Mopper, K. andD. J. Kieber. 2000. Marine photochemistry and its impact on carbon cycling, p. 101–129.In S. J. deMora, S. Demers, and M. Vernet (eds.), The Effects of UV Radiation in the Marine Environment, Cambridge Environmental Chemistry Series 10. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Mopper, K. andD. J. Kieber. 2002. Photochemistry and the cycling of carbon, sulfur, nitrogen, and phosphorus, p. 455–489.In D. Hansell and C. Carlson (eds.), Biogeochemistry of Marine Dissolved Organic Matter. Academic Press, San Diego, California.

    Chapter  Google Scholar 

  • Mulholland, M. R., C. J. Gobler, andC. Lee. 2002. Peptide hydrolysis, amino acid oxidation, and nitrogen uptake in communities seasonally dominated byAureococcus anophagefferens.Limnology and Oceanography 47:1094–1108.

    Google Scholar 

  • Nixon, S. W., S. L. Granger, D. I. Taylor, P. W. Johnson, andB. A. Buckley. 1994. Subtidal volume fluxes, nutrient inputs and brown tide—An alternative hypothesis.Estuarine Coastal Shelf Science 39:303–312.

    Article  CAS  Google Scholar 

  • Rochell-Newall, E. J. andT. R. Fisher. 2002. Chromophoric dissolved organic matter and dissolved organic carbon in Chesapeake Bay.Marine Chemistry 77:23–41.

    Article  Google Scholar 

  • Sieburth, J. M., P. W. Johnson, andP. E. Hargraves. 1988. Ultrastructure and ecology ofAureococcus anophagefferens Gen. et Sp. Nov. (Chrysophyceae): The dominant picoplankter during a bloom in Narragansett Bay, Rhode Island, summer 1985.Journal of Phycology 24:416–425.

    Article  Google Scholar 

  • Sigleo, A. C. andS. A. Macko. 2002. Carbon and nitrogen isotopes in suspended particles and colloids, Chesapeake and San Francisco estuaries, USA.Estuarine Coastal and Shelf Science 54:701–711.

    Article  CAS  Google Scholar 

  • Stubbins, A. 2001. Aspects of aquatic CO photoproduction from CDOM. Ph.D. Dissertation, University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, U.K.

    Google Scholar 

  • Tracey, G. A. 1988. Feeding reduction, reproductive failure, and mortality inMytilus edulis during the 1985 “brown tide” in Narragansett Bay, Rhode Island.Marine Ecology Progress Series 50:73–81.

    Article  Google Scholar 

  • Vaccaro, J. andJ. Jacobson. 1976. Hydrography and hydrodynamics of Virginia estuaries: A mathematical model of Chincoteague Bay, Virginia. Virginia State Water Control Board, Special report no 121 in Applied Marine Science and Ocean Engineering, Virginia Institute of Marine Sciences, Gloucester Point, Virginia.

    Google Scholar 

  • Viera, M. E. C. andR. Chant. 1993. On the contribution of subtidal volume fluxes to algal blooms in Long Island estuaries.Estuarine Coastal and Shelf Science 36:15–29.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Simjouw.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simjouw, JP., Mulholland, M.R. & Minor, E.C. Changes in dissolved organic matter characteristics in Chincoteague Bay during a bloom of the pelagophyteAureococcus anophagefferens . Estuaries 27, 986–998 (2004). https://doi.org/10.1007/BF02803425

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803425

Keywords

Navigation