Skip to main content
Log in

Spatial differences in macroinvertebrate communities in intertidal seagrass habitats and unvegetated sediment in three New Zealand estuaries

  • Published:
Estuaries Aims and scope Submit manuscript

Abstract

This study investigated macroinvertebrate community composition in seagrass beds at a range of spatial scales, with an emphasis on the transition between vegetated and unvegetated sediment. At four intertidal sites in three New Zealand estuaries (Whangamata, Wharekawa, and Whangapoua Harbours), a large continuous bed of seagrass (Zostera capricorni) was selected with adjacent unvegetated sediment. Macroinvertebrate community composition and biomass, as well as sediment characteristics, were determined at sampling locations 1 and 50 m inside seagrass beds, and 1, 10, and 50 m outside seagrass beds. Analysis of univariate measures of community composition (total abundance, number of species, and diversity) and total biomass indicated significant differences among sites and sampling locations, but contrary to many previous studies these measures were not higher inside than outside the seagrass beds. Multivariate analysis indicated that sites with high seagrass biomass supported a similar community composition. The remaining sampling locations were clustered by site, but there were also significant differences in community composition among sampling locations within a site. There were distinctive communities at the edge of seagrass beds at sites with high seagrass biomass, and evidence that the effects of seagrass beds may extend into the unvegetated sediment. At the low seagrass biomass site there was no evidence of any edge effects, although community composition differed inside and outside the bed. Differences in community composition were driven primarily by small changes in the relative abundance of the dominant taxa. At high seagrass biomass sites the absence of deep-burrowing polychaetes and low numbers of bivalves suggests that one possible mechanism underlying the observed variation in community composition was inhibition by the dense root-rhizome mat. The results of this study emphasize the need to consider the linkages between habitats in heterogeneous estuarine landscapes and how those linkages vary among sites, if the structure and functioning of macroinvertebrate communities in seagrass habitats are to be understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance.Australian Journal of Ecology 26: 32–46.

    Article  Google Scholar 

  • Anderson, M. J. 2003. NPMANOVA: A FORTRAN computer program for non-parametric multivariate analysis of variance (for any two-factor ANOVA design) using permutation tests. Department of Statistics, University of Auckland, Auckland, New Zealand.

    Google Scholar 

  • Ansari, Z. A., C. U. Rivonker, P. Ramani, andA. H. Parulekar. 1991. Seagrass habitat complexity and macroinvertebrate abundance in Lakshadweep coral reef lagoons, Arabian Sea.Coral Reefs 10:127–131.

    Article  Google Scholar 

  • Attrill, M. J., J. A. Strong, andA. A. Rowden. 2000. Are macroinvertebrate communities influenced by seagrass structural complexity?Ecography 23:114–121.

    Article  Google Scholar 

  • Baron, J., J. Clavier, andB. A. Thomassin. 1993. Structure and temporal fluctuations of two intertidal seagrass-bed communities in New Caledonia (SW Pacific Ocean).Marine Biology 117:139–144.

    Article  Google Scholar 

  • Bell, S. S., R. A. Brooks, B. D. Robbins, M. S. Fonseca, andM. O. Hall. 2001. Faunal response to fragmentation in seagrass habitats: Implications for seagrass conservation.Biological Conservation 100:115–123.

    Article  Google Scholar 

  • Bologna, P. A. X. andK. L. Heck, Jr. 2000. Impacts of seagrass habitat architecture on bivalve settlement.Estuaries 23:449–457.

    Article  Google Scholar 

  • Bologna, P. A. X. andK. L. Heck, Jr. 2002. Impact of habitat edges on density and secondary production of seagrass-associated fauna.Estuaries 25:1033–1044.

    Article  Google Scholar 

  • Boström, C. andE. Bonsdorff. 1997. Community structure and spatial variation of benthic invertebrates associated withZostera marina beds in the northern Baltic Sea.Journal of Sea Research 37:153–166.

    Article  Google Scholar 

  • Boström, C. andE. Bonsdorff. 2000. Zoobenthic community establishment and habitat complexity—The importance of seagrass shoot-density, morphology, and physical disturbance for faunal recruitment.Marine Ecology Progress Series 205:123–138.

    Article  Google Scholar 

  • Bowden, D. A., A. A. Rowden, andM. J. Attrill. 2001. Effects of patch size and in-patch location on the infaunal macroinvertebrate assemblages ofZostera marina seagrass beds.Journal of Experimental Marine Biology and Ecology 259:133–154.

    Article  Google Scholar 

  • Castel, J., P. Labourg, V. Escaravage, I. Auby, andM. E. Garcia. 1989. Influence of seagrass beds and oyster parks on the abundance and biomass patterns of meio and macrobenthos in tidal flats.Estuarine Coastal and Shelf Science 28:71–85.

    Article  Google Scholar 

  • Clarke, K. R. 1993. Non-parametric multivariate analysis of changes in community structure.Australian Journal of Ecology 18:117–143.

    Article  Google Scholar 

  • Clarke, K. R. andR. M. Warwick. 1994. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth Marine Laboratory, Plymouth, England.

    Google Scholar 

  • Connolly, R. M. andA. J. Butler. 1996. The effects of altering seagrass canopy height on small, motile invertebrates of shallow Mediterranean embayments.Marine Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I 17:637–652.

    Google Scholar 

  • Duarte, C. M. andC. L. Chiscano. 1999. Seagrass biomass and production: A reassessment.Aquatic Botany 65:159–174.

    Article  Google Scholar 

  • Edgar, G. J. andN. S. Barrett. 2002. Benthic macrofauna in Tasmanian estuaries: Scales of distribution and relationships with environmental variables.Journal of Experimental Marine Biology and Ecology 270:1–24.

    Article  Google Scholar 

  • Edgar, G. J. andC. Shaw. 1993. Inter-relationships between sediments, seagrasses, benthic invertebrates and fishes in shallow marine habitats of south-western Australia, p. 429–442.In F. E. Wells, D. I. Walker, H. Kirkman, and R. Lethbridge (eds.), The Marine Flora and Fauna of Rottnest Island, Western Australia, Volume 2, Western Australian Museum, Perth, Western Australia.

    Google Scholar 

  • Edgar, G. J., C. Shaw, G. F. Watson, andL. S. Hammond. 1994. Comparisons of species richness, size structure and production of benthos in vegetated and unvegetated habitats in Western Port, Victoria.Journal of Experimental Marine Biology and Ecology 176:201–226.

    Article  Google Scholar 

  • Eggleston, D. B., L. L. Etherington, andW. E. Elis. 1998. Organism response to habitat patchiness: Species and habitat dependent recruitment of decapod crustaceans.Journal of Experimental Marine Biology and Ecology 223:111–132.

    Article  Google Scholar 

  • Environment Waikato. 1998. Environment Waikato Regional Council. Waikato State of the Environment Report 1998. Hamilton, New Zealand.

  • Field, J. G., K. R. Clarke, andR. M. Warwick. 1982. A practical strategy for analysing multispecies distribution patterns.Marine Ecology Progress Series 8:37–52.

    Article  Google Scholar 

  • Frost, M. T., A. A. Rowden, andM. J. Attrill. 1999. Effect of habitat fragmentation on the macroinvertebrate infaunal communities associated with the seagrassZostera marina L.Aquatic Conservation: Marine and Freshwater Ecosystems 9:255–263.

    Article  Google Scholar 

  • Heck, Jr.,K., L. K. W. Able, C. T. Roman, andM. P. Fahay. 1995. Composition, abundance, biomass, and production of macrofauna in a New England estuary: Comparisons among eelgrass meadows and other nursery habitats.Estuaries 18: 379–389.

    Article  Google Scholar 

  • Hewitt, J. E., S. F. Thrush, V. J. Cummings, andS. J. Turner. 1998. The effects of changing sampling scales on our ability to detect effects of large-scale processes on communities.Journal of Experimental Marine Biology and Ecology 227:251–264.

    Article  Google Scholar 

  • Hovel, K. A., M. S. Fonseca, D. L. Myer, W. J. Kenworthy, andP. E. Whitfield. 2002. Effects of seagrass landscape structure, structural complexity, and hydrodynamic regime of macrofaunal densities in North Carolina seagrass beds.Marine Ecology Progress Series 243:11–24.

    Article  Google Scholar 

  • Hume, T. M. andC. E. Herdendorf. 1988. A geomorphic classification of estuaries and its application to coastal resource management—A New Zealand example.Ocean and Shoreline Management 11:249–274.

    Article  Google Scholar 

  • Irlandi, E. A. 1997. Seagrass patch size and survivorship of an in-faunal bivalve.Oikos 78:511–518.

    Article  Google Scholar 

  • Irlandi, E. A., W. G. Ambrose, Jr., andB. A. Orlando. 1995. Landscape ecology and marine environment: How spatial configuration of seagrass habitat influences growth and survival of bay scallop.Oikos 72:307–313.

    Article  Google Scholar 

  • James, R. J., M. P. Lincoln-Smith, andP. G. Fairweather. 1995. Sieve mesh-size and taxonomic resolution needed to describe natural spatial variation of marine macrofauna.Marine Ecology Progress Series 118:187–198.

    Article  Google Scholar 

  • Lee, S. Y., C. W. Fong, andR. S. S. Wu. 2001. The effect of seagrass (Zostera japonica) canopy structure on associated fauna: A study using artificial seagrass units and sampling of natural beds.Journal of Experimental Marine Biology and Ecology 259: 23–50.

    Article  Google Scholar 

  • Les, D. H., M. L. Moody, S. W. L. Jacobs, andR. J. Bayer. 2002. Systematics of seagrasses (Zosteracea) in Australia and New Zealand.Systematic Botany 27:468–484.

    Google Scholar 

  • McArdle, B. H. andM. J. Anderson. 2001. Fitting multivariate models to community data: A comment on distance-based redundancy analysis.Ecology 82:290–297.

    Article  Google Scholar 

  • Morrisey, D. J., L. Howitt, A. J. Underwood, andJ. S. Stark. 1992. Spatial variation in soft sediment benthos.Marine Ecology Progress Series 81:197–204.

    Article  Google Scholar 

  • Norkko, A., S. F. Thrush, J. E. Hewitt, V. G. Cummings, J. Norkko, J. I. Ellis, G. A. Funnell, D. Schultz, andI. MacDonald. 2002. Smothering of estuarine sand flats by terrigenous clay: The role of wave disturbance and bioturbation in site-dependent macrofaunal recovery.Marine Ecology Progress Series 234:23–41.

    Article  Google Scholar 

  • Ôlafsson, E. B., C. H. Peterson, andW. G. Ambrose. 1994. Does recruitment limitation structure populations and communities of macroinvertebrates in marine soft sediments: The relative significance of pre- and post-settlement processes.Oceanography and Marine Biology: Annual Review 32:265–309.

    Google Scholar 

  • Orth, R. J. 1992. A perspective on plant-animal interactions in seagrasses: Physical and biological determinants influencing plant and animal abundance, p. 147–164.In D. M. John, S. J. Hawkins, and J. H. Price (eds.), Plant-Animal Interactions in the Marine Benthos, The Systematics Association Special Volume No. 46. Clarendon Press, Oxford, U.K.

    Google Scholar 

  • Orth, R. J., K. L. Heck, Jr., andJ. van Montfrans. 1984. Faunal communities in seagrass beds: A review of the influence of plant structure and prey characteristics on predator-prey relationships.Estuaries 7:339–350.

    Article  Google Scholar 

  • Parsons, T. R., Y. Maita, andC. M. Lalli. 1984. A Manual of Chemical and Biological Methods of Seawater Analysis. Pergamon Press, Oxford, U.K.

    Google Scholar 

  • Robbins, B. A. and S. S. Bell. 994. Seagrass landscapes: A terrestrial approach to a marine subtidal environment.Trends in Ecology and Evolution 9:301–304.

    Google Scholar 

  • Snelgrove, P. V. R. andC. A. Butman. 1994. Animal-sediment relationships revisited: Cause versus effect.Oceanography and Marine Biology: An Annual Review 32:111–177.

    Google Scholar 

  • Sokal, R. R. andF. J. Rohlf. 1995. Biometry: The Principles and Practice of Statistics in Biological Research, 3rd edition. Freeman, New York.

    Google Scholar 

  • Spooner, N., B. J. Keely, andJ. R. Maxwell. 1994. Biologically mediated defunctionalization of chlorophyll in the aquatic environment. I. Senescence/decay of the diatomPhaeodactylum tricornutum.Organic Geochemistry 21:509–516.

    Article  CAS  Google Scholar 

  • Stoner, A. W. 1980. The role of seagrass biomass in the organization of benthic macrofaunal assemblages.Bulletin of Marine Science 30:537–551.

    Google Scholar 

  • Thrush, S. F., R. D. Pridmore, J. E. Hewitt, andV. J. Cummings. 1991. Impact of ray feeding disturbances on sandflat macrobenthos: Do communities dominated by polychaetes or shellfish respond differently?Marine Ecology Progress Series 69:245–252.

    Article  Google Scholar 

  • Thrush, S. F., R. D. Pridmore, J. E. Hewitt, andV. J. Cummings. 1992. Adult infauna as facilitators of colonization on intertidal sandflats.Journal of Experimental Marine Biology and Ecology 159: 253–265.

    Article  Google Scholar 

  • Thrush, S. F., R. D. Pridmore, J. E. Hewitt, andV. J. Cummings. 1994. The importance of predators on a sandflat: Interplay between seasonal changes in prey densities and predator effects.Marine Ecology Progress Series 107:211–222.

    Article  Google Scholar 

  • Turner, S. J., J. E. Hewitt, M. R. Wilkinson, D. J. Morrisey, S. F. Thrush, V. J. Cummings, andG. Funnell. 1999. Seagrass patches and landscapes: The influence of wind-wave dynamics and hierarchical arrangements of spatial structure on macrofaunal seagrass communities.Estuaries 22:1016–1032.

    Article  Google Scholar 

  • Virnstein, R. W., P. S. Mikkelsen, K. D. Cairns, andM. A. Capone. 1983. Seagrass beds versus sand bottoms: The trophic importance of their associated benthic invertebrates.Florida Scientist 46:363–381.

    Google Scholar 

  • Webster, P. J., A. A. Rowden, andM. J. Attrill. 1998. Effects of shoot density on the infaunal macro-invertebrate community within aZostera marina seagrass bed.Estuarine Coastal and Shelf Science 47:351–357.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Pilditch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Houte-Howes, K.S.S., Turner, S.J. & Pilditch, C.A. Spatial differences in macroinvertebrate communities in intertidal seagrass habitats and unvegetated sediment in three New Zealand estuaries. Estuaries 27, 945–957 (2004). https://doi.org/10.1007/BF02803421

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803421

Keywords

Navigation