Skip to main content
Log in

Technical note: Conditions for using the floating chamber method to estimate air-water gas exchange

  • Published:
Estuaries Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature cited

  • Belanger, T. V. andE. A. Korzun. 1991. Critique of floating-dome technique for estimating reaeration rates.Journal of Environmental Engineering 117:144–150.

    Article  Google Scholar 

  • Bopp, R. F., P. H. Santschi, Y. H. Li, andB. L. Deck. 1981. Biodegradation and gas exchange of gaseous alkanes in model estuarine ecosystems.Organic Geochemistry 3:9–14.

    Article  CAS  Google Scholar 

  • Broecker, W. S. andT.-H. Peng. 1984. Gas exchange rates in natural systems, p. 479–493.In W. Brutsaert and G. H. Jirka (eds.), Gas Transfer at Water Surfaces. Reidel Publishing Company, Dordrecht, The Netherlands.

    Google Scholar 

  • Carini, S., N. Weston, C. Hopkinson, J. Tucker, A. Giblin, andJ. Vallino. 1996. Gas exchange rates in the Parker River estuary, Massachusetts.Biological Bulletin 191:333–334.

    Google Scholar 

  • Clark, J. F., R. Wanninkhof, P. Schlosser, andH. J. Simpson. 1994. Gas exchange rates in the tidal Hudson River using a dual tracer technique.Tellus 46b:274–285.

    CAS  Google Scholar 

  • Cole, J. J. andN. F. Caraco. 1998. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6.Limnology and Oceanography 43:647–656.

    Article  CAS  Google Scholar 

  • Copeland, B. J. andW. R. Duffer. 1964. Use of a clear plastic dome to measure gaseous diffusion rates in natural waters.Limnology and Oceanography 9:494–499.

    Article  CAS  Google Scholar 

  • D'Avanzo, C., J. N. Kremer, andS. C. Wainright. 1996. Ecosystem production and respiration in response to eutrophication in shallow temperate estuaries.Marine Ecology Progress Series 141:263–274.

    Article  Google Scholar 

  • Donelan, M. A. andR. Wanninkhof. 2002. Gas transfer at water surfaces—Concepts and issues, p. 1–10.In M. Donelan, W. Drennan, E. Saltzman, and R. Wanninkhof (eds.), Gas Transfer at Water Surfaces.Geophysical Monographs 127. AGU Press, Washington, D.C.

    Google Scholar 

  • Gameson, A. L. H. andM. J. Barrett. 1958. Oxidation, reaeration, and mixing in the Thames estuary, p. 63–93.In Oxygen Relationships in Streams. U.S. Department of Commerce, NTIS PB-214 898. National Technical Information Service, Springfield, Virginia.

    Google Scholar 

  • Hartman, B. A. 1983. Laboratory and field investigations of the processes controlling gas exchange across the air-water interface. Ph.D. Dissertation, University of Southern California, Los Angeles, California.

    Google Scholar 

  • Hartman, B. andD. E. Hammond. 1984. Gas exchange rates across the sediment-water and air-water interface in South San Francisco Bay.Journal of Geophysical Research 89:3593–3603.

    Article  CAS  Google Scholar 

  • Hartman, B. andD. E. Hammond. 1985. Gas exchange in San Francisco Bay.Hydrobiologia 129:59–68.

    Article  CAS  Google Scholar 

  • Juliano, D. W. 1969. Reaeration measurements in an estuary.Journal of the Sanitary Engineering Division of the American Society of Civil Engineers 95:1165–1178.

    Google Scholar 

  • Jähne, B. andH. Haußecker. 1998. Air-water gas exchange.Annual Review of Fluid Mechanics 14:321–350.

    Google Scholar 

  • Jähne, B., K. O. Munnich, R. Bosinger, A. Dutzi, W. Huber, andP. Libner. 1987. On parameters influencing air-water gas exchange.Journal of Geophysical Research 92:1937–1949.

    Article  Google Scholar 

  • Kremer, J. N., A. Reischauer, andC. D'Avanzo. 2003. Estuary-specific variation in the air-water gas exchange coefficient for oxygen.Estuaries 26:829–836.

    Article  Google Scholar 

  • Liss, P. S. 1973. Processes of gas exchange across an air-water interface.Deep-Sea Research 20:221–238.

    CAS  Google Scholar 

  • Liss, P. S. andL. Merlivat. 1986. Air-sea gas exchange rates: Introduction and synthesis, p. 113–127.In P. Buat-Ménard (ed.), The Role of Air-Sea Exchange in Geochemical Cycling. Reidel Publishing Company, Boston, Massachusetts.

    Google Scholar 

  • Marino, R. andR. W. Howarth. 1993. Atmospheric oxygen exchange in the Hudson River: Dome measurements and comparison with other natural waters.Estuaries 16:433–445.

    Article  CAS  Google Scholar 

  • McGillis, W. R., J. B. Edson, J. D. Ware, J. W. H. Dacey, J. E. Hare, C. W. Fairall, andR. Wanninkhof. 2001. Carbon dioxide flux techniques performed during GasEx-98.Marine Chemistry 75:267–280.

    Article  CAS  Google Scholar 

  • Murphy, R. C. andJ. N. Kremer. 1983. Community metabolism of Clipperton Lagoon, a coral atoll in the eastern Pacific.Bulletin of Marine Science 33:152–164.

    Google Scholar 

  • Nixon, S. W. 1995. Coastal marine eutrophication: A definition, social causes and future concerns.Ophelia 41:199–219.

    Google Scholar 

  • Nixon, S. W., D. Alonso, M. E. Q. Pilson, and B. A. Buckley. 1980. Turbulent mixing in aquatic microcosms, p. 818–849.In J. P. Giesy, Jr. (ed.), Microcosms in Ecological Research. NTIS, U.S. Department of Energy, Symposium Series #52 (CONF-781101). Springfield, Virginia.

  • Nixon, S. W. andC. Oviatt. 1973. Ecology of a New England salt marsh.Ecological Monographs 43:463–498.

    Article  Google Scholar 

  • Odum, H. T. andC. M. Hoskin. 1958. Comparative studies on the metabolism of marine waters.Publications of the Institute of Marine Science of the University of Texas 5:16–46.

    Google Scholar 

  • Oviatt, C. A., A. A. Keller, P. A. Sampou, andL. L. Beatty. 1986. Patterns of productivity during eutrophication: A mesocosm experiment.Marine Ecology Progress Series 28:69–80.

    Article  Google Scholar 

  • Owens, M. 1965. Some factors involved in the use of dissolved-oxygen distributions in streams to determine productivity.Memorie dell'Istituto Italiano di Idrobiologia 18 (supplement):209–224.

    Google Scholar 

  • Raymond, P. A. andJ. J. Cole. 2001. Gas exchange in rivers and estuaries: Choosing a gas transfer velocity.Estuaries 24:312–317.

    Article  CAS  Google Scholar 

  • Roques, P. 1985. Rate and stoichiometry of nutrient remineralization in an anoxic estuary, the Pettaquamscutt River. Ph.D. Dissertation, University of Rhode Island. Narragansett, Rhode Island.

    Google Scholar 

  • Stephens, D. W. 1978. Preliminary evaluation of the floating dome method of measuring reaeration rates.Journal of Research U.S. Geological Survey 6:547–552.

    Google Scholar 

  • Sugiura, Y., E. R. Ibert, andD. W. Wood. 1963. Mass transfer of carbon dioxide across sea surfaces.Journal of Marine Research 21:11–24.

    CAS  Google Scholar 

  • Torgersen, T., G. Mathieu, R. H. Hesslein, andW. S. Broecker. 1982. Gas exchange dependency on diffusion coefficient: Direct222Rn and3He comparisons in a small lake.Journal of Geophysical Research 87:546–556.

    Article  Google Scholar 

  • Wanninkhof, R., W. Asher, R. Weppernig, H. Chen, P. Schlosser, C. Langdon, andR. Sambrotto. 1993. Gas transfer experiment on Georges Bank using two volatile deliberate tracers.Journal of Geophysical Research 98:20237–20248.

    Article  Google Scholar 

Source of unpublished information

  • Hammond, D. E. personal communication. Department of Earth Sciences, University of Southern California, University Park, Los Angeles, California 90089.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James N. Kremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kremer, J.N., Nixon, S.W., Buckley, B. et al. Technical note: Conditions for using the floating chamber method to estimate air-water gas exchange. Estuaries 26, 985–990 (2003). https://doi.org/10.1007/BF02803357

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803357

Keywords

Navigation