Advertisement

Folia Geobotanica

, Volume 38, Issue 4, pp 357–366 | Cite as

The calcareous riddle: Why are there so many calciphilous species in the Central European flora?

  • Jörg Ewald
Article

Abstract

The pool of the Central European flora consists of a majority of vascular plant taxa that are restricted to very base rich and calcareous soils. Ellenberg indicator values for Germany indicate that this floristic pattern is one of the potentially most powerful determinants of the richness of modern temperate plant communities. Considering the example of the forest flora, which, as the putative natural core of the species pool, exhibits the same skew, it is shown that neither the frequency of suitable soil types nor other correlated ecological factors can explain this striking pattern. Also, the ramification of higher taxa offers no indication of higher evolution speeds in calciphilous plants. As an alternative, it is hypothesized that Pleistocene range contractions have caused the extinction of more acidophilous than calciphilous species, because acid soils were much rarer when refugial areas were at their minimum. If this is correct, one of the most significant ecological patterns in the contemporary distribution of plant diversity must be regarded as a result of ecological drift imposed by a historical bottleneck.

Keywords

Biodiversity Indicator plants Soil acidity Species pool Species richness 

Nomenclature

Ellenberg et al. (1991) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (1997):Deutscher Waldbodenbericht 1996 Ergebnisse der bundesweiten Bodenzustandserhebung im Wald von 1987–1993 (BZE). Vol. 1 & 2. Bundesministerium für Ernährung, Landwirtschaft und Forsten (BMELF), Bonn.Google Scholar
  2. Bohn U., Gollub G., Hettwer C., Neuhäuslová Z., Schlüter H. &Weber H. (2003):Map of the natural vegetation of Europe. Bundesamt für Naturschutz, Bonn.Google Scholar
  3. Borhidi A. (1995): Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora.Acta Bot. Hung. 39: 97–181.Google Scholar
  4. Ellenberg H. (1996):Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ed. 5. Ulmer, Stuttgart.Google Scholar
  5. Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W. &Paulißen D. (1991): Zeigerwerte von Pflanzen in Mitteleuropa.Scripta Geobot. 18: 1–248.Google Scholar
  6. Eriksson O. (1993): The species-pool hypothesis and plant community diversity.Oikos 68: 371–374.CrossRefGoogle Scholar
  7. Falkengren-Grerup U., Brunet J., Quist M. E. &Tyler G. (1995): Is the Ca: Al ratio superior to pH, Ca or Al concentrations of soils in accounting for the distribution of plants in deciduous forest?Pl. & Soil 177: 21–31.CrossRefGoogle Scholar
  8. Fiedler H. J. &Hunger W. (1970):Geologische Grundlagen der Bodenkunde und Standortslehre. Th. Steinkopf, Dresden.Google Scholar
  9. Fischer A. (1999): Floristical changes in Central European forest ecosystems during the past decades as an expression of changing site conditions. In:Karjaleinen T., Spiecker H. & Lavoussinie O. (eds.), Causes and consequences of accelerating tree growth in Europe,EFI-Proceedings 27: 53–64.Google Scholar
  10. Gönnert T. (1989): Ökologische Bedingungen verschiedener Laubwaldgesellschaften des Nordwestdeutschen Tieflandes.Diss. Bot. 136.Google Scholar
  11. Gough L., Shaver G. R., Carroll J., Royer D. L. &Laundre J. A. (2000): Vascular plant species richness in Alaskan arctic tundra: the importance of soil pH.J. Ecol. 88: 54–66.CrossRefGoogle Scholar
  12. Grime J. P. (1979):Plant strategies and vegetation processes. John Wiley, Chichester.Google Scholar
  13. Grubb P. J. (1987): Global trends in species-richness in terrestrial vegetation: a view from the northern hemisphere. In:Gee J.H.R. &Giller P.S. (eds.),Organization of communities, Blackwell, Oxford, pp. 99–118.Google Scholar
  14. Hakes W. (1994): On the predictive power of numerical and Braun-Blanquet classification: an example from beechwoods.J. Veg. Sci. 5: 153–160.CrossRefGoogle Scholar
  15. Iversen J. (1958): The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. In:Hedberg O. (ed.), Systematics of today,Uppsala Univ. Årsskr. 110: 210–215.Google Scholar
  16. Hubbell S. P. (2001):The unified neutral theory of biodiversity and biogeography. Monographs in Population Biology 32, Princeton University Press, Princeton.Google Scholar
  17. Kerner von Marilaun A. (1896):The natural history of plants 2. Hult, New York.Google Scholar
  18. Kinzel H. (1982):Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart.Google Scholar
  19. Landolt E. (1977): Ökologische Zeigerwerte zur Schweizer Flora.Veröff. Geobot. Inst. ETH Stiftung Rübel Zürich 64: 1–208.Google Scholar
  20. Larcher W. (1994):Ökophysiologie der Pflanzen. Ed 4. Ulmer, Stuttgart.Google Scholar
  21. Oberdorfer E. (1992):Süddeutsche Pflanzengesellschaften. Teil IV: Wälder und Gebüsche. Ed. 2. G. Fischer, Stuttgart.Google Scholar
  22. Pärtel M. (2002): Local plant diversity patterns and evolutionary history at the regional scale.Ecology 83: 2361–2366.Google Scholar
  23. Pärtel M., Zobel M., Zobel K. &van der Maarel E. (1996): The species pool and its relation to species richness evidence from Estonian plant communities.Oikos 75: 111–117.CrossRefGoogle Scholar
  24. Peet R.K. &Christensen N.L. (1988): Changes in species diversity during secondary forest succession on the North Carolina piedmont. In:During H.J., Werger M.J.A. &Willems H.J. (eds.),Diversity and pattern in plant communities, Junk, The Hague, pp. 233–246.Google Scholar
  25. Polomski J. &Huhn N. (1998):Wurzelsysteme. Haupt, Bern.Google Scholar
  26. Ricklefs R. (1987): Community diversity: relative roles of local and regional processes.Science 235: 167–171.PubMedCrossRefGoogle Scholar
  27. Rosenzweig M.L. (1995):Species diversity in space and time. Cambridge University Press, Cambridge.Google Scholar
  28. Schimper A.F.W. (1903):Plant-geography upon a physiological basis. Clarendon, Oxford.Google Scholar
  29. Tyler G. (1999): Plant distribution and soil-plant interactions on shallow soils. In:Rydin H., Snoeijs P. &Diekmann M. (eds.),Swedish plant geography, Opulus Press, Uppsala, pp. 21–32.Google Scholar
  30. Ulrich B. &Meyer H. (1987):Chemischer Zustand der Waldböden Deutschlands zwischen 1920 und 1960, Ursachen und Tendenzen seiner Veränderung. Berichte des Forschungszentrums Waldökosysteme/Waldsterben, Reihe B 6, Göttingen, Forschungszentrum Waldökosysteme, Göttingen.Google Scholar
  31. Watts W.A. (1988): Europe. In:Huntley B. &Webb T. (eds.),Vegetation history, Kluwer, Dordrecht, pp. 155–192.Google Scholar
  32. Whittaker R.H. (1960): Vegetation of the Siskiyou Mountains, Oregon and California.Ecol. Monogr. 30: 279–338.CrossRefGoogle Scholar
  33. Zobel M., van der Maarel E. &Dupré C. (1998): Species pool: the concept, its determination and significance for community restoration.Appl. Veg. Sci. 1: 55–66.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2003

Authors and Affiliations

  1. 1.Department of Forest Science and ForestryFachhochschule Weihenstephan, University of Applied SciencesFreisingGermany

Personalised recommendations