Skip to main content
Log in

Ecology of closely related plant species: An introduction

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bogenrieder A., Bühler M. &Härringer P. (1993):Anthoxanthum odoratum L. undAnthoxanthum alpinum (A. etD. Löve) am Feldberg (Schwarzwald). Ein Beispiel für Höhenvikarianz.Carolinea 51: 41–50.

    Google Scholar 

  • Braun-Blanquet J. (1928):Pflanzensoziologie. Wien.

  • Braun-Blanquet J. (1929):Poa granitica, nouvelle Graminée de l’Europe Centrale.Arch. Bot. Bull. Mens. 3: 46–48.

    Google Scholar 

  • Bretagnolle F. &Thompson J.D. (1996): An experimental study of ecological differences in winter growth between sympatric diploid and autotetraploidDactylis glomerata.J. Ecol. 84: 343–351.

    Article  Google Scholar 

  • Brochman C. &Elven R. (1992): Ecological and genetic consequences of polyploidy in arcticDraba (Brassicaceae).Evol. Trends Pl. 6: 111–124.

    Google Scholar 

  • Chase M.W. et al. (1993): Phylogenetics of seed plants, an analysis of nucleotide sequences from the plastid generbcL.Ann. Missouri Bot. Gard. 80: 528–580.

    Article  Google Scholar 

  • Ehrendorfer F. (1980): Polyploidy and distribution. In:Lewis W.H. (ed.),Polyploidy, biological relevance, Plenum Press, New York & London, pp. 45–60.

    Google Scholar 

  • Grime J.P., Hodgson J.G. &Hunt R. (1988):Comparative plant ecology: a functional approach to common British species. Unwin Hyman, London.

    Google Scholar 

  • Harper J.L. &Chancellor A.P. (1959): The comparative biology of closely related species living in the same area. IV.Rumex: interference between individuals in populations of one and two species.J. Ecol. 47: 679–695.

    Article  Google Scholar 

  • Harper J.L. &Clatworthy J.N. (1963): The comparative biology of closely related species. VI. Analysis of the growth ofTrifolium repens andT. fragiferum in pure and mixed populations.J. Exp. Bot. 14: 172–190.

    Article  Google Scholar 

  • Hroudová Z. &Zákravský P. (1993a): Ecology of two cytotypes ofButomus umbellatus II. Reproduction, growth and biomass production.Folia Geobot. Phytotax. 28: 413–424.

    Google Scholar 

  • Hroudová Z. &Zákravský P. (1993b): Ecology of two cytotypes ofButomus umbellatus III. Distribution and habitat differentiation in the Czech and Slovak Republics.Folia Geobot. Phytotax. 28: 425–435.

    Google Scholar 

  • Hroudová Z., Krahulcová A., Zákravský P. &Jarolímová V. (1996): The biology ofButomus umbellatus in shallow waters with fluctuating water level.Hydrobiologia 340: 27–30.

    Article  Google Scholar 

  • Källersjö M. et al. (1998): Simultaneous parsimony jackknife analysis 2538rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants.Pl. Syst. Evol. 213: 259–287.

    Article  Google Scholar 

  • Krahulcová A. &Jarolímová V. (1993): Ecology of two cytotypes ofButomus umbellatus I. Karyology and breeding behaviour.Folia Geobot. Phytotax. 28: 385–411.

    Google Scholar 

  • Lee M.S.Y. (1999): Molecular phylogenies become functional.Trends Ecol. Evol. 14: 177–178.

    Article  PubMed  Google Scholar 

  • Marhold K. (1999): Taxonomic evaluation of the tetraploid populations ofCardamine amara (Brassicaceae) from the Eastern Alps and adjacent areas.Bot. Helv. 109: 67–84.

    Google Scholar 

  • Meerts P. (1992): An experimental investigation of life history and plasticity in two cytotypes ofPolygonum aviculare L. subsp.aviculare that coexist in an abandoned arable field.Oecologia 92: 442–449.

    Article  Google Scholar 

  • Melzer H. (1986): Notizen zur Flora von Burgenlandes von Nieder- und Oberösterreich.Verh. Zool.-Bot. Ges. Österreich 124: 81–92.

    Google Scholar 

  • Silvertown J., Franco M. & Harper J.L. (eds.) (1996): Plant life histories: ecological correlates and phylogenetic constraints.Philos. Trans., Ser. B 351: 1227–1385.

    Google Scholar 

  • Soltis D.E. et al. (1997): Angiosperm phylogeny inferred from 18S ribosomal DNA sequences.Ann. Missouri Bot. Gard. 84: 1–49.

    Article  Google Scholar 

  • Stebbins G.L. (1980): Polyploidy in plants: unsolved problems and prospects. In:Lewis W.H. (ed.),Polyploidy, biological relevance, Plenum Press, New York & London, pp. 495–520.

    Google Scholar 

  • Stebbins G.L. (1984): Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach.Bot. Helv. 94: 1–13.

    Google Scholar 

  • Stebbins G. L. (1985): Polyploidy, hybridization, and the invasion of new habitats.Ann. Missouri Bot. Gard. 72: 824–832.

    Article  Google Scholar 

  • Stebbins G.L. &Dawe J.C. (1987): Polyploidy and the distribution of the European flora: A reappraisal.Bot. Jahrb. Syst. 108: 343–354.

    Google Scholar 

  • Westhoff V. &van der Maarel E. (1978): The Braun-Blanquet approach. In:Whittaker R.H. (ed.),Classification of plant communities, Dr. W. Junk Publishers, The Hague, pp. 287–399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Krahulec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krahulec, F., Marhold, K. & Schmid, B. Ecology of closely related plant species: An introduction. Folia Geobot 34, 1–5 (1999). https://doi.org/10.1007/BF02803072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803072

Keywords

Navigation