Advertisement

Folia Geobotanica

, Volume 40, Issue 1, pp 91–104 | Cite as

Nuclear DNA content variation within the genusTaraxacum (Asteraceae)

  • Luděk Záveský
  • Vlasta Jarolímová
  • Jan Štěpánek
Article

Abstract

Nuclear DNA content was estimated using flow cytometry in 13 sections represented by 18 species of the genusTaraxacum using propidium iodide as the DNA stain. Investigated plants represented diploid, triploid and tetraploid species from sections considered both primitive and advanced, i.e.,T. sect.Dioszegia, Piesis, Glacialia, Mongolica, Scariosa, Obovata, T. pyrenaicum group,T. sect.Coronata, Palustria, Taraxacum (=Crocea),Kashmirana, Ruderalia andErythrosperma. Estimated nuclear 2C DNA content ranged from 1.74 pg in diploidT. linearisquameum (T. sect.Ruderalia) to 6.91 pg in tetraploidT. albidum (T. sect.Mongolica), demonstrating 3.97-fold variation. The lowest monoploid genome size 1Cx=0.87 pg was recorded inT. linearisquameum (T. sect.Ruderalia) together withT. brachyglossum (T. sect.Erythrosperma), and the highest one (1.73 pg) was recorded inT. albidum (T. sect.Mongolica), giving a 1.99-fold difference in the genus. No significant differences in genome size were observed withinT. sect.Ruderalia, similarly no intraspecific variation was observed inT. paludosum (T. sect.Palustria) andT. serotinum (T. sect.Dioszegia). These results indicate a high intraspecific stability of the trait. Preliminary comparisons of genome size in species/sections considered to be close relatives were made. These data give tentative additional evidence for the close phylogenetic relationship between sectionsPalustria andPiesis and against the close relationship between sectionsPiesis andDioszegia.

Keywords

Compositae C-value Flow cytometry Genome size Sections Taraxacum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow P. (1981): Pers. comm. Http://www.rbgkew.org.uk/cval/homepage.html (2004).Google Scholar
  2. Bennett M.D., Bhandol P. &Leitch I.J. (2000a): Nuclear DNA amounts in angiosperms and their modern uses — 807 new estimates.Ann. Bot. (Oxford) 86: 859–909.CrossRefGoogle Scholar
  3. Bennett M.D., Johnston S., Hodnet G.L. &Price H.J. (2000b):Allium cepa L. cultivars from four continents compared by flow cytometry show nuclear DNA constancy.Ann. Bot. (Oxford) 85: 351–357.CrossRefGoogle Scholar
  4. Bennett M.D., Leitch I.J. &Hanson L. (1998): DNA amounts in two samples of angiosperms weeds.Ann. Bot. 82 (Suppl. A): 121–134.CrossRefGoogle Scholar
  5. Bennett M.D., Smith J.B. &Lewis Smith R.I. (1982): DNA amounts of angiosperms from the Antarctic and South Georgia.Environm. Exp. Bot. 22: 307–318.CrossRefGoogle Scholar
  6. Bennetzen J.L. (2002): Mechanisms and rates of genome expansion and contraction in flowering plants.Genetica 115: 29–36.PubMedCrossRefGoogle Scholar
  7. Doležel J., Bartoš J., Voglmary H. &Greilhuber J. (2003): Nuclear DNA content and genome size of trout and human.Cytometry Part A 51A: 127–128.CrossRefGoogle Scholar
  8. Doležel J. &Göhde W. (1995): Sex determination in dioecious plantsMelandrium album andM. rubrum using high-resolution flow cytometry.Cytometry 19: 103–106.PubMedCrossRefGoogle Scholar
  9. Doll R. (1973): Revision der sect.ErythrospermaDahlst. emend.Lindb. f. der GattungTaraxacumZinn. (Teil I.).Feddes Repert. 83: 673–740.CrossRefGoogle Scholar
  10. Doll R. (1976): Die SectionScariosa H.-M. emend.Dahlst. der GattungTaraxacum.Feddes Repert. 87: 553–585.CrossRefGoogle Scholar
  11. Doll R. (1982): Grundriss der Evolution der GattungTaraxacumZinn.Feddes Repert. 93: 481–624.CrossRefGoogle Scholar
  12. Ellul P., Boscaiu M., Vicente O., Moreno V. &Rosselló J.A. (2002): Intra- and interspecific variation in DNA content inCistus (Cistaceae).Ann. Bot. (Oxford) 90: 345–351.CrossRefGoogle Scholar
  13. Handel-Mazzetti H. von (1907):Monographie der Gattung Taraxacum. Leipzig & Wien.Google Scholar
  14. Hanson L., McMahon K.A., Johnson M.A.T. &Bennett M.D. (2001): First nuclear DNA C-values for 25 angiosperm families.Ann. Bot. (Oxford) 87: 251–258.CrossRefGoogle Scholar
  15. Hughes J. &Richards A.J. (1989): Isozymes and the status ofTaraxacum (Asteraceae) agamospecies.Bot. J. Linn. Soc. 99: 365–376.CrossRefGoogle Scholar
  16. Jakob S.S., Meister A. &Blattner F.R. (2004): Considerable genome size variation ofHordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates.Molec. Biol. Evol. 21: 860–869.PubMedCrossRefGoogle Scholar
  17. Kirschner J. &Štěpánek J. (1996): Modes of speciation and evolution of the sections inTaraxacum.Folia Geobot. Phytotax. 31: 415–426.Google Scholar
  18. Kirschner J. &Štěpánek J. (1997): A nomenclatural checklist of supraspecific names inTaraxacum.Taxon 46: 87–98.CrossRefGoogle Scholar
  19. Kirschner J. &Štěpánek J. (1998a):A monograph of Taraxacumsect. Palustria. Institute of Botany, Průhonice.Google Scholar
  20. Kirschner J. &Štěpánek J. (1998b): A Revision ofTaraxacum sect.Piesis (Compositae).Folia Geobot. 33: 391–414.CrossRefGoogle Scholar
  21. Kirschner J., Štěpánek J., Tichý M., Krahulcová A., Kirschnerová L. &Pellar L. (1994): Variation inTaraxacum bessarabicum and allied taxa of the sectionPiesis (Compositae): Allozyme diversity, karyotypes and breeding behaviour.Folia Geobot. Phytotax. 29: 61–83.Google Scholar
  22. Kirschner J., Štěpánek J., Mes T.H.M., Den Nijs J.C.M., Oosterveld P, Štorchová H. &Kuperus P. (2003): Principal features of the cpDNA evolution inTaraxacum (Asteraceae, Lactuceae): a conflict with taxonomy.Pl. Syst. Evol. 239: 231–255.CrossRefGoogle Scholar
  23. Lysák M.A. &Doležel J. (1998): Estimation of nuclear DNA content inSesleria (Poaceae).Caryologia 51: 123–132.Google Scholar
  24. Małecka J. (1967): Processes of intraspecific differentiation in the genusTaraxacum.Genet. Polon. 8: 185–188.Google Scholar
  25. Moscone E.A., Baranyi M., Ebert I., Greilhuber J., Ehrendorfer F. &Hunziker A.T. (2003): Analysis of nuclear DNA content inCapsicum (Solanaceae) by flow cytometry and feulgen densitometry.Ann. Bot. (Oxford) 92: 21–29.CrossRefGoogle Scholar
  26. Naganowska B., Wolko B., Šliwińska E. &Kaczmarek Z. (2003): Nuclear DNA content variation and species relationships in the genusLupinus (Fabaceae).Ann. Bot. (Oxford) 92: 349–355.CrossRefGoogle Scholar
  27. Petrov D.A. (2001): Evolution of genome size: new approaches to an old problem.Trends Genet. 17: 23–28.PubMedCrossRefGoogle Scholar
  28. Richards A.J. (1973): The origin ofTaraxacum agamospecies.Bot. J. Linn. Soc. 66: 189–211.Google Scholar
  29. SanMiguel P. &Bennetzen J.L. (1998): Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons.Ann. Bot. (Oxford) 82: 37–44.CrossRefGoogle Scholar
  30. SanMiguel P., Gault B.S., Tikhonov A., Nakajima Y. &Bennetzen J.L. (1998): The paleontology of intergene retrotranspozons of maize.Nat. Gen. 20: 43–45.CrossRefGoogle Scholar
  31. SanMiguel P., Tikhonov A., Jin Y.K., Motchoulskaia N., Zakharov D., MelakeBerhan A., Springer P.S., Edwards K.J., Lee M., Avramova Z. &Bennetzen J.L. (1996): Nested retrotransposons in the intergenic regions of the maize genome.Science 274: 765–768.PubMedCrossRefGoogle Scholar
  32. Soltis D.E., Soltis P.S., Bennett M.D. &Leitch I.J. (2003): Evolution of genome size in the angiosperms.Amer. J. Bot. 90: 1596–1603.Google Scholar
  33. Suda J., Kyncl T. &Freiová R. (2003): Nuclear DNA amounts in Macaronesian angiosperms.Ann. Bot. (Oxford) 92: 153–164.CrossRefGoogle Scholar
  34. Swift H. (1950): The constancy of deoxyribose nucleic acid in plant nuclei.Proc. Natl. Acad. Sci. USA 36: 643–654.PubMedCrossRefGoogle Scholar
  35. Van Soest J.L. (1954): Sur quelques Taraxaca d’Espagne.Collect. Bot. (Barcelona) 4(1/1): 1–32.Google Scholar
  36. Van Soest J.L. (1958): Thy phytogeography ofTaraxacum with special reference to Europe.Blumea 4 (suppl.): 60–67.Google Scholar
  37. Van Soest J.L. (1963):Taraxacum species from India, Pakistan and neighbouring countries.Wentia 10: 1–91.Google Scholar
  38. Wendel J.F., Cronn R.C., Johnston J.S. &Price H.J. (2002): Feast and famine in plant genomes.Genetica 115: 37–47.PubMedCrossRefGoogle Scholar
  39. Wicker T., Stein N., Albar L., Feuillet C., Schlagenhauf E. &Keller B. (2001): Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution.Pl. J. 26: 307–316.CrossRefGoogle Scholar
  40. Wittzell H. (1999): Chloroplast DNA variation and reticulate evolution in sexual and apomictic sections of dandelions.Molec. Ecol. 8: 2023–2035.CrossRefGoogle Scholar

Copyright information

© Institute of Botany 2005

Authors and Affiliations

  • Luděk Záveský
    • 1
  • Vlasta Jarolímová
    • 2
  • Jan Štěpánek
    • 1
    • 2
  1. 1.Department of BotanyCharles UniversityPrague 2Czech Republic
  2. 2.Institute of BotanyAcademy of Sciences of the Czech RepublicPrůhonice 1Czech Republic

Personalised recommendations