Skip to main content
Log in

The regulation of AMPA receptor-binding sites

  • Original Articles
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A wide variety of mechanisms have been identified that can regulate the α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor complex. Modulation has been shown to occur at the nucleic acid level via RNA editing and alternative splicing. At the posttranslational level, processes such as phosphorylation, glycosylation, chemical modification of reactive groups on the receptor proteins, interaction with a putative receptor-associated modulatory protein, and changes in the lipid environment have been reported to regulate receptor binding and function. In this review, we discuss general aspects of the cell biology, pharmacology, and function of AMPA receptors. In particular, we focus on some factors shown to modulate agonist binding and discuss possible molecular mechanisms underlying the regulation observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albin R. L., Young A. B., Penny J. B., Handelin B., Balfour R., Anderson K. D., Markel D. S., Tourtellotte W. W., and Reiner A. (1990) Abnormalities of striatal projection neurones and N-methyl-Daspartate receptor channels.N. Engl. J. Med. 322, 1293–1298.

    PubMed  CAS  Google Scholar 

  • Arai A., Silberg J., Kessler M., and Lynch G. (1995) Effect of thiocyanate on AMPA receptor mediated responses in excised patches and hippocampal slices.Neuroscience 66, 815–827.

    PubMed  CAS  Google Scholar 

  • Arita H., Hanasaki K., Nakano T., Oka S., Teraoka H., and Matsumoto K. (1991) Novel proliferative effect of phospholipase A2 in Swiss 3T3 cells via specific binding site.J. BioL. Chem. 266, 19,139–19,141.

    CAS  Google Scholar 

  • Aronica E., Casabona G., Genazzani A. A., Catania M. V., Contestabile A., Virgili M., and Nicoletti F. (1992) Melittin enhances excitatory amino acid release and AMPA-stimulated 45Ca2+ influx in cultured neurons.Brain Res. 586, 72–77.

    PubMed  CAS  Google Scholar 

  • Bahr B. A., Hoffman K. B., Kessler M., Hennegriff M., Park G. Y., Yamamoto R. S., Kawasaki B. T., Vanderklish P. W., Hall R. A., and Lynch G. (1996) Distinct distributions of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits and a related 53,000 M(R) antigen (GR53) in brain tissue.Neuroscience 74, 707–721.

    PubMed  CAS  Google Scholar 

  • Barnes J. M. and Henley J. M. (1992) Molecular Characteristics of excitatory amino acid receptors.Prog. Neurobiol. 39, 113–133.

    PubMed  CAS  Google Scholar 

  • Baudry M., Massicotte G., and Hauge S. (1991) Opposite effects of phospholipase A2 on [3H]AMPA binding in adult and neonatal membranes.Dev. Brain Res. 61, 265–267.

    CAS  Google Scholar 

  • Bettler B., and Mulle C. (1995) Review: neurotransmitter receptors II. AMPA and kainate receptors.Neuropharmacology 34, 123–140.

    PubMed  CAS  Google Scholar 

  • Bettler B., Boulter J., Hermans-Borgmeyer I., O’Shea-Greenfield A., Deneris E. S., Moll C., Borgmeyer U., Hollmann M., and Heinemann S. (1990) Cloning of a novel glutamate receptor subunit, GluR5: expression in the nervous system during development.Neuron. 5, 583–595.

    PubMed  CAS  Google Scholar 

  • Bettler B., Egebjerg J., Sharma G., Pecht G., Hermans-Borgmeyer I., Moll C., Stevens C. F., and Heinemann S. (1992) Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit.Neuron. 8, 257–265.

    PubMed  CAS  Google Scholar 

  • Bi X., Chang V., Molnar E., Mcllhinney R. A., and Baudry M. (1996) The C-terminal domain of glutamate receptor subunit 1 is a target for calpainmediated proteolysis.Neuroscience 73, 903–906.

    PubMed  CAS  Google Scholar 

  • Bi X., Chang V., Siman R., Tocco G., and Baudry M. (1996) Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain.Brain Res. 726, 98–108.

    PubMed  CAS  Google Scholar 

  • Bliss T. V. P. and Collingridge, G. L. (1993) A synaptic model of memory: long term potentiation in the hippocampus.Nature 361, 31–39.

    PubMed  CAS  Google Scholar 

  • Boulter J., Hollmann M., O’Shea-Greenfield A., Hartley M., Deneris E., Maron C., and Heinemann S. (1990) Molecular cloning and functional expression of glutamate receptor subunit genes.Science 249, 1033–1037.

    PubMed  CAS  Google Scholar 

  • Bowie D. and Smart T. G. (1993) Thiocyanate ions selectively antagonize AMPA-evoked responses in Xenopus laevis oocytes microinjected with rat brain mRNA.Br. J. Pharmacol. 109, 779–787.

    PubMed  CAS  Google Scholar 

  • Braestrup C. and Andersen P. H. (1987) Effects of heavy metal cations and other sulfhydryl reagents on brain dopamine D1 receptors: evidence for involvement of a thiol group in the conformation of the active site.J. Neurochem. 48, 1667–1672.

    PubMed  CAS  Google Scholar 

  • Bramham C. R., Alkon D. L., and Lester D. S. (1994) Arachidonic acid and diacylglycerol ACT synergistically through protein kinase C to persistently enhance synaptic transmission in the hippocampus.Neuroscience 60, 737–743.

    PubMed  CAS  Google Scholar 

  • Brose N., Huntley G. W., Stern-Bach Y., Sharma G., Morrison J. H., and Heinemann S. F. (1994) Differential assembly of coexpressed glutamate receptor subunits in neurons of rat cerebral cortex.J. Biol. Chem. 269, 16,780–16,784.

    CAS  Google Scholar 

  • Burnashev N., Schoepfer R., Monyer H., Ruppersberg J. P., Gunther W., Seeburg P. H., and Sakmann B. (1992) Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor.Science 257, 1415–1419.

    PubMed  CAS  Google Scholar 

  • Catania M. V., Hollingsworth Z., Penney J. B., and Young A. B. (1993) Phospholipase A2 modulates different subtypes of excitatory amino acid receptors-autoradiographic evidence.J. Neurochem. 60, 236–245.

    PubMed  CAS  Google Scholar 

  • Chang L.-R., Barnard E. A., Lo M. S. A., and Dolly J. O. (1981) Molecular sizes of benzodiazepine receptors and the interacting GABA receptors in the membrane are identical.FEBS Lett. 126, 309–312.

    PubMed  CAS  Google Scholar 

  • Chittajallu R., Dev K. K., and Henley J. M. (1997) Effects of thiol group modification on [3H]NBQX binding in rat cortical membranes.Biochem. Soc. Trans. 25, 538S.

    PubMed  CAS  Google Scholar 

  • Choi D. W. (1992) Excitotoxic cell death.J. Neurobiol. 23, 1261–1276.

    PubMed  CAS  Google Scholar 

  • Clark J. D., Schievella A. R., Nalefski E. A., and Lin L.-L. (1995) Cytosolic phospholipase A2.J. Lipid Med. Cell Sig. 12, 83–117.

    CAS  Google Scholar 

  • Clements M. P., Bliss T. V., and Lynch M. A. (1991) Increase in arachidonic acid concentration in a postsynaptic membrane fraction following the induction of long-term potentiation in the dentate gyrus.Neuroscience 45, 379–389.

    PubMed  CAS  Google Scholar 

  • Craig A. M., Blackstone C. D., Huganir R. L., and Banker G. (1993) The distribution of glutamate receptors in cultured rat hippocampal neuronspostsynaptic clustering of AMPA-selective subunits.Neuron. 10, 1055–1068.

    PubMed  CAS  Google Scholar 

  • Cruickshank A. M., and Henley J. M. (1994) Phospholipase A2 enhances [3H]AMPA binding to a putative homomeric GluR-B receptor in the rat spinal cord.FEBS Lett. 339, 168–170.

    PubMed  CAS  Google Scholar 

  • Cull-Candy S. G. and Usowicz M. M. (1987) Patchclamp recording from single glutamate-receptor channels.Trends Pharmacol. Sci. 8, 218–223.

    CAS  Google Scholar 

  • Curtis D. R. and Watkins J. C. (1961) The chemical excitation of spinal neurons by certain amino acids.J. Physiol. 166, 1–14.

    Google Scholar 

  • De Hass G. H., Postema N. M., Nieuwenhuizen W., and Van Deenen L. L. M. (1968) Purification and properties of phospholipase A2 from porcine pancreas.Biochim. Biophys. Acta. 159, 103–117.

    Google Scholar 

  • Dennis A. E. (1994) Diversity of group types, regulation, and function of phospholipase A2.J. Biol. Chem. 269, 13,057–13,060.

    CAS  Google Scholar 

  • Desai M. A., Valli M. T., Monn J. A., and Schoepp, D. D. (1995) 1-BCP, a memory-enhancing agent, selectively potentiates AMPA-induced [3H]norepinephrine release in rat hippocampal slices.Neuropharmacol. 34, 141–147.

    CAS  Google Scholar 

  • Dev K. K., Foged C., Andersen H., Honoré T., and Henley J. M. (1997) High affinity binding sites for [125I]-labelled pancreatic secretory phospholipase A2 in rat brain. Molec. Brain Res., in press

  • Dev K. K., Honoré T., and Henley J. M. (1995) Phospholipase A2 down-regulates the affinity of [3H]AMPA binding to rat cortical membranes.J. Neurochem. 65, 184–191.

    PubMed  CAS  Google Scholar 

  • Dev K. K., Honoré T., and Henley J. M. (1997) Effects of phospholipase A2 on a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor subunits.Biochem. Soc. Trans. 25, 537S.

    PubMed  CAS  Google Scholar 

  • Dev K. K., Petersen V., Honoré T., and Henley J. M. (1996) Pharmacology and regional distribution of the binding of 6-[3H]nitro-7-sulphamoylbenzo (F) quinoxaline-2-3 dione to rat brain.J. Neurochem. 67, 2609–2612.

    PubMed  CAS  Google Scholar 

  • Dev K. K., Roberts P. J., and Henley J. M. (1996) Characterization of the interaction between guanyl nucleotides and AMPA receptors in rat brain.Neuropharmacol. 35, 1583–1593.

    CAS  Google Scholar 

  • Dev, K. K., Honoré, T., Nielsen, M., and Henley, J. M. (1996) Phospholipase A2 and irradiation inactivation treatments of rat brain sections display similar regional effects on [3H] AMPA binding.Br. Pharm. Soc. P177.

  • Dingledine R., McBain C. J., and McNamara J. O. (1990) Excitatory amino acid receptors in epilepsy.Trends Pharmacol. Sci. 11, 334–338.

    PubMed  CAS  Google Scholar 

  • Donevan S. D. and Rogawski M. A. (1993) GYKI 52466, a 2,3-benzodiazepine, is a highly selective, non-competitive antagonist of AMPA/kainate receptor responses.Neuron. 10, 51–59.

    PubMed  CAS  Google Scholar 

  • Dong H., O’Brien R. J., Fung E. T., Lanahan A. A., Worley P. E., and Huganir R. L. (1997) GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors.Nature 386, 279–284.

    PubMed  CAS  Google Scholar 

  • Fitzpatrick J. S. and Baudry M. (1994) Blockade of long-term depression in neonatal hippocampal slices by a phospholipase A2 inhibitor.Dev. Brain Res. 78, 81–86.

    CAS  Google Scholar 

  • Fitzpatrick J. S., Shahi K., and Baudry M. (1992) Effect of seizure activity and calpain inhibitor I on LTP in juvenile hippocampal slices.Int. J. Dev. Neurosci. 10, 313–319.

    PubMed  CAS  Google Scholar 

  • Fletcher E. J. and Lodge D. (1996) New developments in the molecular pharmacology of alphaamino-3-hydroxy-5-methyl-4-isoxazole propionate and kainate receptors.Pharmacol. Ther. 70, 65–89.

    PubMed  CAS  Google Scholar 

  • Gagne J., Giguere C., Tocco G., Ohayon M., Thompson R. F., Baudry M., and Massicotte G. (1996) Effect of phosphatidylserine on the binding properties of glutamate receptors in brain sections from adult and neonatal rats.Brain Res. 740, 337–345.

    PubMed  CAS  Google Scholar 

  • Gallo V., Upso L. M., Hayes W. P., Vyklicky L., Winters C. A., and Buonanno A. (1992) Molecular cloning and developmental analysis of a new glutamate receptor isoform in cerebellum.J. Neurosci. 12, 1010–1023.

    PubMed  CAS  Google Scholar 

  • Glaser K. B., Mobilio D., Chang J. Y., and Senko N. (1993) Phospholipase A2 enzymes: regulation and inhibition.Trends Pharmacol. Sci. 14, 92–99.

    PubMed  CAS  Google Scholar 

  • Gozlan H., Chinestra P., Diabira D., and Ben-Ari Y. (1994) NMDA redox site modulates long-term potentiation of NMDA but not of AMPA receptors.Eur. J. Pharmacol. 262, R3–4.

    PubMed  CAS  Google Scholar 

  • Gozlan H., Khazipov R., Diabira D., and Ben-Ari Y. (1995) In CA1 hippocampal neurons, the redox state of NMDA receptors determines LTP expressed by NMDA but not by AMPA receptors.J. Neurophysiol. 73, 2612–2617.

    PubMed  CAS  Google Scholar 

  • Hall R. A., and Soderling T. R. (1997) Differential surface expression and phosphorylation of the N-methyl-D-aspartate receptor subunits NR1 and NR2 in cultured hippocampal neurons.J. Biol. Chem. 272, 135–4140.

    Google Scholar 

  • Hall R. A., Hansen A., Andersen P. H., and Soderling T. R. (1997) Surface expression of the AMPA receptor subunits GluR1, GluR2, and GluR4 in stably transfected baby hamster kidney cells.J. Neurochem. 68, 625–630.

    PubMed  CAS  Google Scholar 

  • Hall R. A., Kessler M., and Lynch G. (1992) Evidence that high- and low-affinity DL-α-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) binding sites reflect membranedependent states of a single receptor.J. Neurochem. 59, 1997–2004.

    PubMed  CAS  Google Scholar 

  • Hall R. A., Kessler M., Quan A., Ambrosingerson J., and Lynch G. (1993) Cyclothiazide decreases [3H]AMPA binding to rat brain membranes: evidence that AMPA receptor desensitization increases agonist affinity.Brain Res. 628, 345–348.

    PubMed  CAS  Google Scholar 

  • Hall R. A., Massicotte G., Kessler M., Baudry M., and Lynch G. (1993) Thiocyanate equally increases affinity for 2 DL-alpha-amino-3-hydroxy-5-methylisoxazolepropionic acid (AMPA) receptor states.Mol. Pharmacol. 43, 459–464.

    PubMed  CAS  Google Scholar 

  • Hall R. A., Quan A., Kessler M., and Lynch G. (1996) Ultraviolet radiation, thiol reagents, and solubilization enhance AMPA receptor binding affinity via a common mechanism.Neurochem. Res. 21, 963–968.

    PubMed  CAS  Google Scholar 

  • Hampson D. R., Huang X. P., Wells J. W., Walter J. A., and Wright J. L. (1992) Interaction of domoic acid and several derivatives with kainic acid and AMPA binding sites in rat brain.Eur. J. Pharmacol. 218, 1–8.

    PubMed  CAS  Google Scholar 

  • Hanasaki K. and Arita H. (1992) Characterization of a high affinity binding site for pancreatic-type phospholipase A2 in the rat.J. Biol. Chem. 267, 6414–6420.

    PubMed  CAS  Google Scholar 

  • Hansen J. J., Lauridsen J., Nielsen E., and Krogsgaard-Larsen P. (1983) Enzymic resolution and binding to rat brain membranes of the glutamic acid agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid.J. Med. Chem. 26, 901–903.

    PubMed  CAS  Google Scholar 

  • Hattori S., Okuda K., Hamajima K., Hamajima K. S., Hamajima M. M., and Hamajima S. K. (1994) Expression and characterization of the α2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-selective glutamate receptor channel in a baculovirus system.Brain Res. 666, 43–52.

    PubMed  CAS  Google Scholar 

  • Hawkins L. M., Beaver K. M., Jane D. E., Taylor P. M., Sunter D. C., and Roberts P. J. (1995) Binding of the new radioligand (S)-[3H]AMPA to rat brain synaptic membranes: effects of a series of structural analogues of the non-NMDA receptor agonist willardiine.Neuropharmacol. 34, 405–410.

    CAS  Google Scholar 

  • Hawkins L. M., Beaver K. M., Jane D. E., Taylor P. M., Sunter D. C., and Roberts P. J. (1995) Characterization of the pharmacology and regional distribution of (S)-[3H]-5-fluorowillardiine binding in rat brain.Brit. J. Pharmacol. 116, 2033–2039.

    CAS  Google Scholar 

  • Hedlund B. and Bartfai T. (1997) The importance of thiol- and disulphide groups in agonist and antagonist binding to the muscarinic receptor.Mol. Pharmacol. 15, 531–544.

    Google Scholar 

  • Heinrikson R. L., Krueger E. T., and Keim P. S. (1977) Amino acid sequence of phospholipase A2-a from the venom of Crotalus adamanteus.J. Biol. Chem. 252, 4913–4921.

    PubMed  CAS  Google Scholar 

  • Henley J. M. (1993) Characterization of the a1-losteric modulatory protein associated with non-NMDA receptors.Biochem. Soc. Trans. 21, 89–93.

    PubMed  CAS  Google Scholar 

  • Henley J. M. (1994) Kainate binding proteins: phylogeny, structures and possible functions.Trends Pharmacol. Sci. 15, 182–190.

    PubMed  CAS  Google Scholar 

  • Henley J. M. (1995) Subcellular localization and molecular pharmacology of distinct populations of [3H]-AMPA binding sites in rat hippocampus.Brit. J. Pharmacol. 115, 295–301.

    CAS  Google Scholar 

  • Henley J. M. and Barnard E. A. (1991) Comparison of solubilized kainate and alpha-amino-3-hydroxy-5-methylisoxazolepropionate binding sites in chick cerebellum.J. Neurochem. 56, 702–705.

    PubMed  CAS  Google Scholar 

  • Henley J. M., Ambrosini A., Rodriguez-lthurralde D., Sudan H., Brackley P., Kerry C., Mellor I., Abutidze K., Usherwood P. N. R., and Barnard E. A. (1992) Purified unitary kainate/alpha-amino-3-hydroxy-5-methylisoxazole-propionate (AMPA) and kainate/AMPA/N-methyl-D-aspartate receptors with interchangeable subunits.Proc. Natl. Acad. Sci. USA 89, 4806–4810.

    PubMed  CAS  Google Scholar 

  • Hollmann M., and Heinemann S. (1994) Cloned glutamate receptors.Annu. Rev. Neurosci. 17, 31–108.

    PubMed  CAS  Google Scholar 

  • Hollmann M., O’Shea-Greenfield A., Rogers S. W., and Heinemann S. (1989) Cloning by functional expression of a member of the glutamate receptor family.Nature 342, 643–648.

    PubMed  CAS  Google Scholar 

  • Honoré T. (1989) Excitatory amino acid receptor subtypes and specific antagonists.Med. Res. Rev. 9, 1–23.

    PubMed  Google Scholar 

  • Honoré T. and Drejer J. (1988) Chaotropic ions affect the conformation of quisqualate receptors in rat cortical membranes.J. Neurochem. 51, 457–461.

    PubMed  Google Scholar 

  • Honoré T. and Nielsen M. (1985) Complex structure of quisqualate-sensitive glutamate receptors in rat cortex.Neurosci. Lett. 54, 27–32.

    PubMed  Google Scholar 

  • Honoré T., Davies S. N., Drejer J., Fletcher E. J., Jacobsen P., Lodge D., and Nielsen F. E. (1988) Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists.Science 241, 701–703.

    PubMed  Google Scholar 

  • Honoré T., Drejer J., and Nielsen M. (1986) Calcium discriminates two [3H]kainate binding sites with different molecular target sizes in rat cortex.Neurosci. Lett. 65, 47–52.

    PubMed  Google Scholar 

  • Honoré T., Drejer J., Nielsen E. O., and Nielsen M. (1989) Non-NMDA glutamate receptor antagonist [3H]CNQX binds with equal affinity to two agonist states of quisqualate receptors.Biochem. Pharmacol. 38, 3207–3212.

    PubMed  Google Scholar 

  • Honoré T., Lauridsen T., and Krogsgaard-Larsen P. (1982) The binding of [3H]AMPA, a structural analogue of glutamic acid to rat brain membranes.J. Neurochem. 38, 173–178.

    PubMed  Google Scholar 

  • Hunter C., Wheaton K. D., and Wenthold R. J. (1990) Solubilization and partial purification of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding sites from rat brain.J. Neurochem. 54, 118–125.

    PubMed  CAS  Google Scholar 

  • Isacc J. T. R., Nicoll R. A., and Malenka R. C. (1995) Evidence for silent synapses: implications for expression of LTP.Neuron. 15, 427–434.

    Google Scholar 

  • Ishmaru H., Kamboj R., Ambrosini A., Henley J. M., Soloviev M. M., Sudan H., Rossier J., Abutidze K., Rampersad V., Usherwood P. N. R., Bateson A. N., and Barnard E. A. (1996) A unitary non-NMDA receptor short subunit from Xenopus: DNA cloning and expression.Receptor and Channels 4, 31–49.

    Google Scholar 

  • Johansen T. H., Chaudhary A., and Verdoorn T. A. (1995) Interactions among GYKI-52466, cyclothiazide, and aniracetam at recombinant AMPA and kainate receptors.Mol. Pharmacol. 48, 946–955.

    PubMed  CAS  Google Scholar 

  • KeinÄnen K., Wisden W., Sommer B., Werner P., Herb A., Verdoorn T. A., Sakmann B., and Seeburg P. H. (1990) A family of AMPA selective glutamate receptors.Science 249, 556–560.

    PubMed  Google Scholar 

  • Kepner G. R. and Macey R. I. (1968) Membrane enzyme systems. Molecular size determinations by radiation inactivation.Biochem. Biophys. Acta. 163, 188–203.

    PubMed  CAS  Google Scholar 

  • Kessler M., Arai A., Quan A., and Lynch G. (1996) Effect of cyclothiazide on binding properties of AMPA-type glutamate receptors: lack of competition between cyclothiazide and GYKI 52466.Mol. Pharmacol. 49, 123–131.

    PubMed  CAS  Google Scholar 

  • Kiskin N. I., Krishtal O. A., Tsyndrenko A. Y., and Akaike N. (1986) Are sulfhydryl groups essential for function of the glutamate-operated receptorionophore complex?Neurosci. Lett. 66, 305–310.

    PubMed  CAS  Google Scholar 

  • Klockgether T. and Turski L. (1989) Excitatory amino acids and the basal ganglia: implications for the therapy of Parkinson’s disease.Trends Neurosci. 12, 285–286.

    PubMed  CAS  Google Scholar 

  • Köhler M., Kornau H.-C, and Seeburg P. H. (1994) The organization of the gene for the functionally dominant a-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor subunit GluR-B.J. Biol. Chem. 269, 17367–17370.

    PubMed  Google Scholar 

  • Krogsgaard-Larsen P., Honoré T., Hansen J. J., Curtis D. R., and Lodge D. (1980) A new class of glutamate agonist structurally related to ibotenic acid.Nature 284, 64–66.

    PubMed  CAS  Google Scholar 

  • Kuusinen A., Arvola M., and KeinÄnen K. (1995) Molecular dissection of the agonist binding site of an AMPA receptor.EMBO J. 14, 6327–6332.

    PubMed  CAS  Google Scholar 

  • Linden D. J. (1995) Phospholipase A2 controls the induction of short-term versus long-term depression in the cerebellar purkinje neuron in culture.Neuron. 15, 1393–1401.

    PubMed  CAS  Google Scholar 

  • Linden D. J., Sheu F. S., Murakami K., and Routtenberg A. (1987) Enhancement of long-term potentiation by cis-unsaturated fatty acid: relation to protein kinase C and phospholipase A2.J. Neurosci. 7, 3783–3792.

    PubMed  CAS  Google Scholar 

  • Lipton S. A. (1993) Prospects for clinically tolerated NMDA antagonists-open-channel blockers and alternative redox states of nitric oxide.Trends Neurosci. 16, 527–532.

    PubMed  CAS  Google Scholar 

  • Lomeli H., Mosbacher J., Melcher T., Höger T., Geiger J. R. P., Kuner T., Monyer H., Higuchi M., Bach A., and Seeburg P. H. (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing.Science 266, 1709–1713.

    PubMed  CAS  Google Scholar 

  • Lomeli H., Wisden W., Köhler M., KeinÄnen K., Sommer B., and Seeburg P. H. (1992) High-affinity kainate and domoate receptors in rat brain.FEES Lett. 307, 139–143.

    CAS  Google Scholar 

  • Lynch M. A. and Voss K. L. (1990) Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue.J. Neurochem. 55, 215–221.

    PubMed  CAS  Google Scholar 

  • Massicotte G. and Baudry M. (1990) Modulation of DL-a-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/ quisqualate receptors by phospholipase A2 treatment.Neurosci. Lett. 118, 245–248.

    PubMed  CAS  Google Scholar 

  • Massicotte G., Bernard J., and Baudry M. (1992) Postnatal changes in AMPA receptor regulation by phospholipase-A2 treatment of synaptic membranes-temporally differential effects on agonist and antagonist binding.Dev. Brain Res. 66, 203–208.

    CAS  Google Scholar 

  • Massicotte G., Oliver M. W., Lynch G., and Baudry M. (1990) Effect of bromophenacyl bromide, a phospholipase A2 inhibitor, on the induction and maintenance of LTP in hippocampal slices.Brain Res. 537, 49–53.

    PubMed  CAS  Google Scholar 

  • Massicotte G., Vanderklish P., Lynch G., and Baudry M. (1991) Modulation of DL-alphaamino-3-hydroxy-5-methyl-4-isoxazolepropionic acid quisqualate receptors by phospholipase A2-a necessary step in long-term potentiation.Proc. Natl. Acad. Sci. USA 88, 1893–1897.

    PubMed  CAS  Google Scholar 

  • McBain C. J., and Mayer M. L. (1994) N-methyl-Daspartate receptor structure and function.Phys. Rev. 74, 723–760.

    CAS  Google Scholar 

  • McGlade-McCulloch E., Yamamoto H., Tan S. E., Brickey D. A., and Soderling T. R. (1993) Phosphorylation and regulation of glutamate receptors by calcium calmodulin-dependent protein kinase-II.Nature 362, 640–642.

    Google Scholar 

  • McIlhinney R. A. J. and Molnár E. (1996) Characterization, cell-surface expression and 1igand-binding properties of different truncated N-terminal extracellular domains of the ionotropic glutamate receptor subunit GluR1.Biochem, J. 315, 217–225.

    CAS  Google Scholar 

  • McIlhinney R. A., Molnar E., Atack J. R., and Whiting P. J. (1996) Cell surface expression of the human N-methyl-D-aspartate receptor subunit la requires the co-expression of the NR2A subunit in transfected cells.Neuroscience 70, 989–997.

    PubMed  CAS  Google Scholar 

  • Meldrum B. S. and Garthwaite J. (1990) Excitatory amino acid neurotoxicity and neurodegenerative disease.Trends Pharmacol. Sci. 11, 379–387.

    PubMed  CAS  Google Scholar 

  • Molnár E., Baude A., Richmond S. A., Patel P. B., Somogyi P., and Mcilhinney R. A. J. (1993) Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned GluRl glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain.Neuroscience 53, 307–326.

    PubMed  Google Scholar 

  • Monaghan D. T., Bridges R. J., and Cotman C. W. (1989) The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system.Ann. Rev. Pharmacol. Toxicol. 29, 365–402.

    CAS  Google Scholar 

  • Monaghan D. T., Yao D., and Cotman C. W. (1984) Distribution of [3H] AMPA binding sites in rat brain as determined by quantitative autoradiography.Brain Res. 324, 160–164.

    PubMed  CAS  Google Scholar 

  • Monyer H., Seeburg P. H., and Wisden W. (1991) Glutamate-operated channels-developmentally early and mature forms arise by alternative splicing.Neuron. 6, 799–810.

    PubMed  CAS  Google Scholar 

  • Mori H. and Mishina M. (1995) Review: neurotransmitter receptors VIII. Structure and function of the NMDA receptor channel.Neuropharmacol. 34, 1219–1237.

    CAS  Google Scholar 

  • Mosbacher J., Schoepfer H., Monyer H., Burnashev N., Seeburg P. H., and Ruppersberg J. P. (1994) A molecular determinant for submillisecond desensitization in glutamate receptors.Science 266, 1059–1062.

    PubMed  CAS  Google Scholar 

  • Moxham C. P. and Malbon C. C. (1985) Fat cell beta 1-adrenergic receptor: structural evidence for existence of disulfide bridges essential for ligand binding.Biochemistry 24, 6072–6077.

    PubMed  CAS  Google Scholar 

  • Mukherjee A. B., Miele L., and Pattabiraman N. (1994) Phospholipase A2 enzymes: regulation and physiological role.Biochem. Pharmacol. 48, 1–10.

    PubMed  CAS  Google Scholar 

  • Murakami M., Kudo I., and Inoue K. (1995) Secretory phospholipases A2.J. Lipid Med. Cell Sig. 12, 119–130.

    CAS  Google Scholar 

  • Nakajima M., Hanasaki K., Ueda M., and Arita H. (1992) Effect of pancreatic type phospholipase A2 on isolated porcine cerebral arteries via its specific binding sites.FEBS Lett. 309, 261–264.

    PubMed  CAS  Google Scholar 

  • Nakanishi N., Shneider N. A., and Axel R. (1990) A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties.Neuron. 5, 569–581.

    PubMed  CAS  Google Scholar 

  • Nakanishi S. (1994) Metabotropic glutamate receptors: synaptic transmission, modulation and plasticity.Neuron. 13, 1031–1037.

    PubMed  CAS  Google Scholar 

  • Nakanishi S. and Masu M. (1994) Molecular diversity and functions of glutamate receptors.Annu. Rev. Biophys. Biomol. Struct. 23, 319–348.

    PubMed  CAS  Google Scholar 

  • Nielsen E. O., Cha J.-H.-J., Honoré T., Penney J. B., and Young A. B. (1988) Thiocyanate stabilizes AMPA binding to the quisqualate receptor.Br. J. Pharmacol. 157, 197–203.

    CAS  Google Scholar 

  • Nielsen E. O., Drejer J., Cha J. J., Young A. B., and Honoré T. (1990) Autoradiographic characterization and localization of quisqualate binding sites in rat brain using the antagonist [3H]CNQX: comparison with [3H]AMPA binding sites.J. Neurochem. 54, 686–695.

    PubMed  CAS  Google Scholar 

  • Nielsen M. and Braestrup C. (1988) The apparent target size of rat brain benzodiazepine receptor, acetylcholinesterase, and pyruvate kinase is highly influenced by experimental conditions.J. Biol. Chem. 263, 11,900–11,906.

    CAS  Google Scholar 

  • Nielsen M., Klimek V., and Hyttel J. (1984) Distinct target size of dopamine D-1 and D-2 receptors in rat striatum.Life Sci. 35, 325–332.

    PubMed  CAS  Google Scholar 

  • Nishimune A., Nash S. R., Nakanishi S., and Henley J. M. (1996) Detection of protein-protein interactions in the nervous system using the two-hybrid system.Trends Neurosci. 19, 261–267.

    PubMed  CAS  Google Scholar 

  • O’Hara O., Ishizaki J., and Arita H. (1995) Structure and function of phospholipase A2 receptor.Prog. Lipid Res. 34, 117–138.

    CAS  Google Scholar 

  • O’Hara P. J., Sheppard P. O., Thogersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K., Thomsen C., Gilbert T. L., and Mulvihill E. R. (1993) The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins.Neuron. 11, 41–52.

    PubMed  CAS  Google Scholar 

  • Ogita K., Sakamoto T., Han D., Azuma Y., and Yoneda Y. (1994) Discrimination by added ions of ligands at ionotropic excitatory amino acid receptors insensitive to N-methyl-D-aspartate in rat brain using membrane binding techniques.Neurochem. Int. 24, 379–388.

    PubMed  CAS  Google Scholar 

  • Olsen R. W., Szamraj O., and Houser C. R. (1987) [3H]AMPA binding to glutamate receptor subpopulations in rat brain.Brain Res. 402, 243–254.

    PubMed  CAS  Google Scholar 

  • Partin K. M. and Mayer M. L. (1996) Negative allosteric modulation of wild-type and mutant AMPA receptors by GYKI 53655.Mol. Pharmacol. 49, 142–148.

    PubMed  CAS  Google Scholar 

  • Partin K. M., Bowie D., and Ml M. (1995) Structural determinants of allosteric regulation in alternatively spliced AMPA receptors.Neuron. 14, 833–843.

    PubMed  CAS  Google Scholar 

  • Partin K. M., Patneau D. K., Winters C. A., Mayer M. L., and Buonanno A. (1993) Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin A.Neuron. 11, 1069–1082.

    PubMed  CAS  Google Scholar 

  • Pellegrini-Giampietro D. E., Bennet M. V. L., and Zukin R. S. (1991) Differential expression of three glutamate receptor genes in developing rat brain: an in situ hybridization study.Proc. Natl. Acad. Sci. USA 88, 4157–4161.

    PubMed  CAS  Google Scholar 

  • Petralia R. S. and Wenthold R. J. (1992) Light and electron immunocytochemical localization of AMPA selective glutamate receptors in the rat brain.J. Comp. Neurol. 318, 329–354.

    PubMed  CAS  Google Scholar 

  • Pickering D. S., Taverna F. A., Salter M. W., and Hampson D. R. (1995) Palmitoylation of the GluR6 kainate receptor.Proc. Natl. Acad. Sci. USA 92, 12,090–12,094.

    CAS  Google Scholar 

  • Pin J.-P. and Duvoisin R. (1995) Review: neurotransmitter receptors I. The metabotropic glutamate receptors: structures and functions.Neuropharmacology 34, 1–26.

    PubMed  CAS  Google Scholar 

  • Puchalski R. B., Puchalski J.-C. L., Brose N., Traynelis S. F., Egebjerg J., Kukekov V., Wenthold R. J., Rogers S. W., Lin F., Moran T., Morrison J. H., and Heinemann S. F. (1994) Selective RNA editing and subunit assembly of native glutamate receptors.Neuron. 13, 131–147.

    PubMed  CAS  Google Scholar 

  • Raymond L. A., Blackstone CD., and Huganir R.L. (1993) Phosphorylation of amino acid neuro-transmitter receptors in synaptic plasticity.Trends Neurosci. 16, 147–153.

    PubMed  CAS  Google Scholar 

  • S.-Sasamata M., K.-Yatsugi S., Okada M., Sakamoto S., Yatsugi S.-L, Togam J., Hatanaka K.-L, Ohmori J., Koshiya K., Usuda S., and Murase K. (1996) YM90K: pharmacological characterization as a selective and potent a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor antagonist.J. Pharmacol. Exp. Therap. 276, 84–92.

    Google Scholar 

  • Schlegel W. (1983) Structure-function relationships for hormone receptors and adenyl cyclase: the contribution of target size analysis.J. Receptor Res. 3, 339–357.

    CAS  Google Scholar 

  • Schwartz R. D. and Kellar K. J. (1983) [3H]Acetylcholine binding sites in the brain.Mol. Pharmacol. 24, 387–391.

    PubMed  CAS  Google Scholar 

  • Seal A. J., Collingridge G. L., and Henley J. M. (1995) An investigation of the membrane topology of the ionotropic glutamate receptor subunit GluRl in a cell-free system.Biochem. J. 312, 451–56.

    PubMed  CAS  Google Scholar 

  • Seeburg P. H. (1993) The TINS/TIPS lecture-The molecular biology of mammalian glutamate receptor channels.Trends Neurosci. 16, 359–365.

    PubMed  CAS  Google Scholar 

  • Seeburg P. H. (1996) The role of RNA editing in controlling glutamate receptor channel properties.J. Neurochem. 66, 1–5.

    PubMed  CAS  Google Scholar 

  • Shahi K. and Baudry M. (1992) Increasing binding affinity of agonists to glutamate receptors increases synaptic responses at glutamatergic synapses.Proc. Natl Acad. Sei. USA 89, 6881–6685.

    CAS  Google Scholar 

  • Shaw P. J., Chinnery R. M., and Ince P. G. (1994) Non-NMDA receptors in motor neuron disease (MND): a quantitative autoradiographic study in spinal cord and motor cortex using [3H]CNQX and [3H]kainate.Brain Res. 655, 186–194.

    PubMed  CAS  Google Scholar 

  • Sheardown M. J., Nielsen E. 0., Hansen A. J., Jacobsen P., and Honoré T. (1990) 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia.Science 247, 571–574.

    PubMed  CAS  Google Scholar 

  • Simon E. J. and Groth J. (1975) Kinetics of opiate receptor activation by sulfhydryl reagents: evidence for a conformational change in the presence of sodium ions.Proc. Natl. Acad. Sei. USA 72, 2404–2407.

    CAS  Google Scholar 

  • Smith A. L. and Mcllhinney R. A. J. (1992) Effects of acromelic acid A on the binding of [3H]kainic acid and [3H]AMPA to rat brain synaptic plasma membranes.Br. J. Pharmacol. 105, 83–86.

    PubMed  CAS  Google Scholar 

  • Sommer B. and Seeburg P. H. (1992) Glutamate receptor channels: novel properties and new clones.Trends Pharmacol. Sei. 13, 291–296.

    CAS  Google Scholar 

  • Sommer B., KeinÄnen K., Verdoorn T. A., Wisden W., Burnashev N., Herb A., Köhler M., Takagi T., Sakmann B., and Seeburg P. H. (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS.Science 249, 1580–1585.

    PubMed  CAS  Google Scholar 

  • Sommer B., Köhler M., Sprengel R., and Seeburg P. H. (1991) RNA editing in brain controls a determinant of ion flow in glutamate-gated channels.Cell. 67, 11–19.

    PubMed  CAS  Google Scholar 

  • Standley S., Irvin N., and Baudry M. (1994) Differential subcellular localization of two populations of glutamate/AMPA receptors in the rat telencephalon.Neurochem. Int. 25, 287–293.

    PubMed  CAS  Google Scholar 

  • Sucher N. J. and Lipton S. A. (1991) Redox modulatory site of the NMDA receptor-channel complex: regulation by oxidized glutathione.J. Neurosci. Res. 30, 582–591.

    PubMed  CAS  Google Scholar 

  • Sutcliffe M. J., Wo Z. G., and Oswald R. E. (1996) Three dimensional models of non-NMDA glutamate receptors.Biophys. J. 70, 1575–1589.

    PubMed  CAS  Google Scholar 

  • Tang C. M., Shi Q. Y., Katchman A., and Lynch G. (1991) Modulation of the time course of fast EPSC’s and glutamate channel kinetics by aniracetam.Science 254, 288–290.

    PubMed  CAS  Google Scholar 

  • Terramani T., Kessler M., Lynch G., and Baudry M. (1988) Effects of thiol-reagents on [3H] α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid binding to rat telencephalic membranes.Mol. Pharmacol. 34, 117–123.

    PubMed  CAS  Google Scholar 

  • Tocco G., Massicotte G., Standley S., Thompson R. F., and Baudry M. (1992) Phospholipase A2- induced changes in AMPA receptor-an autora-diographic study.Neuroreport. 3, 515–518.

    PubMed  CAS  Google Scholar 

  • Trussell L. O. and Fischbach G. D. (1989) Glutamate receptor desensitization and its role in synaptic transmission.Neuron. 3, 209–218.

    PubMed  CAS  Google Scholar 

  • Uchino S., Sakimura K., Nagahari K., and Mishina M. (1992) Mutations in a putative agonist binding region of the AMPA-selective glutamate receptor channel.FEES Lett. 308, 253–257.

    CAS  Google Scholar 

  • Vadas P., Browning J., Edelson J., and Pruzanski W. (1993) Extracellular phospholipase A2 expression and inflammation: the relationship with associated disease states.J. Lipid Mediator 8, 1–30.

    CAS  Google Scholar 

  • Wachtel H. and Turski L. (1990) Glutamate-target in schizophrenia.Trends Pharmacol. Sci. 11, 219–220.

    PubMed  CAS  Google Scholar 

  • Watkins J. and Collingridge G. L. (1994) Phenylglycine derivatives as antagonists of metabotropic glutamate receptors.Trends Pharmacol. Sci. 15, 333–342.

    PubMed  CAS  Google Scholar 

  • Watkins J., Krogsgaard-Larsen P., and Honoré T. (1990) Structure-activity relationships in the development of excitatory amino acid receptor agonists and antagonists.Trends Pharmacol. Sci. 11, 25–33.

    PubMed  CAS  Google Scholar 

  • Wenthold R. J., Hunter C., Wada K., and Dechesne C. J. (1990) Antibodies to a C-terminal peptide of the rat brain glutamate receptor subunit, GluR-A, recognize a subpopulation of AMPA binding sites but not kainate sites.FEBS Lett. 276, 147–150.

    PubMed  CAS  Google Scholar 

  • Wenthold R. J., Trumpy V. A., Zhu W. S., and Petralia R. S. (1994) Biochemical and assembly properties of GluR6 and KA2, 2 members of the kainate receptor family, determined with subunit-specific antibodies.J. Biol. Chem. 269, 1332–1339.

    PubMed  CAS  Google Scholar 

  • Wenthold R. J., Yokotani N., Doi K., and Wada K. (1992) Immunochemical characterization of the non-NMDA glutamate receptor using subunitspecific antibodies.J. Biol. Chem. 267, 501–507.

    PubMed  CAS  Google Scholar 

  • Werner P., Voigt M., KeinÄnen K., Wisden W., and Seeburg P. H. (1991) Cloning of a putative highaffinity kainate receptor expressed predominantly in hippocampal CA3 cells.Nature 351, 742–744.

    PubMed  CAS  Google Scholar 

  • Wo Z. G. and Oswald R. E. (1994) Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation.Proc. Natl. Acad. Sci. USA 91, 7154–7158.

    PubMed  CAS  Google Scholar 

  • Wong L. A. and Mayer M. L. (1993) Differential modulation by cyclothiazide and concanavalin A of desensitization at native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and kainatepreferring glutamate receptors.Mol. Pharmacol. 44, 504–510.

    PubMed  CAS  Google Scholar 

  • Wong L. A., Mayer M. L., Jane D. E., and Watkins J. C. (1994) Willardiines differentiate agonist binding sites for kainate-versus AMPA-preferring glutamate receptors in DRG and hippocampal neurons.J. Neurosci. 14, 3881–3897.

    PubMed  CAS  Google Scholar 

  • Yamada K. A. and Tang C. M. (1993) Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents.J. Neurosci. 13, 3904–3915.

    PubMed  CAS  Google Scholar 

  • Young A. B., and Fagg G. E. (1990) Excitatory amino acid receptors in the brain: membrane binding and autoradiographic approaches-EAA pharmacology.Trends Pharmacol. Sci. 11, 126–133.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dev, K.K., Henley, J.M. The regulation of AMPA receptor-binding sites. Mol Neurobiol 17, 33–58 (1998). https://doi.org/10.1007/BF02802023

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02802023

Index Entries

Navigation