Skip to main content
Log in

Therapeutic potential of neurotrophins for treatment of hearing loss

  • Original Articles
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Degeneration of spiral ganglion neurons (SGNs) and hair cells in the cochlea induced by aging, injury, ototoxic drugs, acoustic trauma, and various diseases is the major cause of hearing loss. Discovery of growth factors that can either prevent SGN and hair-cell death or stimulate hair-cell regeneration would be of great interest. Studies over the past several years have provided evidence that specific neurotrophins are potent survival factors for SGNs and protect these neurons from ototoxic drugs in vitro and in vivo. Current research focuses more on understanding the mechanism of hair-cell regeneration/differentiation and identification of growth factors that can stimulate hair-cell regeneration. SGNs are required to relay the signal to the central nervous system even when a cochlear implant is used to replace hair-cell function or in the case that cochlear sensory epithelium can be stimulated to regenerate new hair cells successfully. Therefore, neurotrophins may have their therapeutic value in prevention and treatment of hearing impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balak K. J., Corwin J. T., and Jones J. E. (1990) Regenerated hair cells can originate from supporting cell progeny: evidence from phototoxicity and laser ablation experiments in the lateral line system.J. Neurosci. 10, 2502–2512.

    PubMed  CAS  Google Scholar 

  • Barald K. F., Lindberg K. H., Hardiman K., Kavka A. I., Lewis J. E., Victor J. C., Gardner C. A., and Poniatowski A. (1997) Immortalized cell lines from embryonic avian and murine otocysts: tools for molecular studies of the developing inner ear.Int. J. Devel. Neurosci. 15, 523–540.

    Article  CAS  Google Scholar 

  • Barbacid M. (1993) The trk family of neurotrophin receptors: molecular characterization and oncogenic activation in human tumors, inMolecular Genetics of Nervous System Tumors, (Levin, A. and Schmidek, H., ed.) Wiley-Liss, New York, pp. 123–136.

    Google Scholar 

  • Bianchi L. M., Conover J. C., Fritzsch B., DeChiara T., Lindsay R. M., and Yancopoulos G. D. (1996) Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice.Development 122, 1965–1973.

    PubMed  CAS  Google Scholar 

  • Casaccia-Bonnefil P., Carter B. D., Dobrowsky R. T., and Chao M. V. (1996) Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75.Nature 383, 716–719.

    Article  PubMed  CAS  Google Scholar 

  • Chao M. V. (1994) The p75 neurotrophin receptor.J. Neurobiol. 25, 1373–1385.

    Article  PubMed  CAS  Google Scholar 

  • Chardin S. and Romand R. (1995) Regeneration and mammalian auditory hair cells [letter; comment].Science 267, 707–711.

    Article  PubMed  CAS  Google Scholar 

  • Clary D. O. and Reichardt L. F. (1994) An alternatively spliced form of the nerve growth factor receptor TrkA confers an enhanced response to neurotrophin 3.Proc. Natl. Acad. Sci. USA 91, 11,133–11,137.

    Article  CAS  Google Scholar 

  • Cortazzo M. H., Kassis E. S., Sproul K. A., and Schor N. F. (1996) Nerve growth factor (NGF)-mediated protection of neural crest cells from antimitotic agent-induced apoptosis: the role of the low-affinity NGF receptor.J. Neurosci. 16, 3895–3899.

    PubMed  CAS  Google Scholar 

  • Corwin J. and Cotanche D. (1988) Regeneration of sensory hair cells after acoustic trauma.Science 240, 1772–1774.

    Article  PubMed  CAS  Google Scholar 

  • Davies A. M., Lee K. F., and Jaenisch R. (1993a) p75-deficient trigeminal sensory neurons have an altered response to NGF but not to other neurotrophins.Neuron 11, 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Dazert S., Battaglia A., and Ryan A. F. (1997) Transfection of neonatal rat cochlear cells in vitro with an adenovirus vector.Int. J. Devel. Neurosci. 15, 595–600.

    Article  CAS  Google Scholar 

  • Erkman L., McEvilly R. J., Luo L., Ryan A. K., Hooshmand F., O’Connell S. M., Keithley E. M., Rapaport D. H., Ryan A. F., and Rosenfeld M. G. (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development.Nature 381, 603–606.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Duan M. L., ElShamy W. M., and Canlon B. (1996) Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3.Nature Med. 2, 463–467.

    Article  PubMed  CAS  Google Scholar 

  • Ernfors P., Van De Water T., Loring J., and Jaenisch R. (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development.Neuron 14, 1153–1164.

    Article  PubMed  CAS  Google Scholar 

  • Forge A., Li L., Corwin J. T., and Nevill G. (1993) Ultrastructural evidence for hair cell regeneration in the mammalian inner ear [see comments].Science 259, 1616–1619.

    Article  PubMed  CAS  Google Scholar 

  • Frade J. M., Rodriguez-Tebar A., and Barde Y. A. (1996) Induction of cell death by endogenous nerve growth factor through its p75 receptor.Nature 383, 166–168.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B., Sarai P. A., Barbacid M., and Silos-Santiago I. (1997a) Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds.Int. J. Devel. Neurosci. 15, 563–576.

    Article  CAS  Google Scholar 

  • Fritzsch B., Silos-Santiago I., Bianchi L. M., and Farinas I. (1997b) The role of neurotrophic factors in regulating the development of inner ear innervation.Trends Neurosci. 20, 159–64.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsch B., Silos-Santiago I., Smeyne R., Fagan A., and Barbacid M. (1995) Reduction and loss of inner ear innervation in trkB and trkC receptor knockout mice: a whole-mount Dil and scanning electron microscopic analysis.Auditory Neurosci. 1, 401–117.

    Google Scholar 

  • Fritzsch B., Silos-Santiago I., Bianchi L., and Farinas I. (1997c) Effects of neurotrophin and neurotrophin receptor disruption on the afferent inner ear innervation.Sem. Cell Dev. Biol. 8, 277–284.

    Article  CAS  Google Scholar 

  • Gao W.-Q., Dybdal N., Shinsky N., Murnane A., Schmelzer C., Siegel M., Keller G., Hefti F., Phillips H. S., and Winslow J W. (1995a) Neurotrophin-3 reverses experimental cisplatininduced peripheral sensory neuropathy.Annals Neurol. 38, 30–37.

    Article  CAS  Google Scholar 

  • Gao W.-Q., Weil R., Dugich-Djordjevic M., and Lu B. (1997) The therapeutic potentials of neurotrophic factors for diseases of the nervous system.Exp. Opin. Ther. Patents,7, 345–338.

    Article  Google Scholar 

  • Gao W.-Q., Zheng J. L., and Karihoaloo M. (1995b) Neurotrophin-4/5 (NT-4/5) and brain-derived neurotrophic factor (BDNF) act at later stages of cerebellar granule cell differentiation.J. Neurosci. 15, 2656–2667.

    PubMed  CAS  Google Scholar 

  • Gao W. Q. and Hatten M. E. (1994) Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum.Development 120, 1059–1070.

    PubMed  CAS  Google Scholar 

  • Geschwind M. D., Hartnick C. J., Liu W., Amat J., Van De Water T. R., and Federoff H. J. (1996) Defective HSV-1 vector expressing BDNF in auditory ganglia elicits neurite outgrowth: model for treatment of neuron loss following cochlear degeneration.Human Gene Ther. 7, 173–182.

    Article  CAS  Google Scholar 

  • Gu R., Marchonni M., and Corwin J. T. (1996) Glial growth factor enhances supporting cell proliferation in rodent vestibular epithelia cultured in isolation.Soc. Neurosci. Abstr.,22, 520.

    Google Scholar 

  • Hashino E. and Salvi R. J. (1993) Changing spatial patterns of DNA replication in the noice-damaged chick cochlea.J. Cell. Sci.,105, 23–31.

    PubMed  Google Scholar 

  • Hashino E., Tanaka Y., Salvi R. J., and Sokabe M. (1992) Hair cell regeneration in the adult budgerigar after kanamycin ototoxicity.Hear. Res. 59, 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Hefti F. (1986) Nerve growth factor (NGF) promotes survival of septal cholinergic neurons after fimbrial transactions.J. Neurosci. 6, 2155–2162.

    PubMed  CAS  Google Scholar 

  • Hoffman D., Breakefield X. O., Short M. P., and Aebischer P. (1993) Transplantation of a polymerencapsulated cell line genetically engineered to release NGF.Exper. Neurol. 122, 100–106.

    Article  CAS  Google Scholar 

  • Hoffman D., Wahlberg L., and Aebischer P. (1990) NGF released from a polymer matrix prevents loss of ChAT expression in basal forebrain neurons following a Fimbria-Fornix lesion.Exp. Neurol. 110, 39–44.

    Article  PubMed  CAS  Google Scholar 

  • Holley M. C. and Lawlor P. (1997) Production of conditionally immortalised cell lines from a transgenic mouse.Audiol. Neuo-Otol. 2, 25–35.

    Article  CAS  Google Scholar 

  • Holley M. C., Nishida Y., and Grix N. (1997) Conditional immortalization of hair cells from the inner ear.Int. J. Devel. Neurosci. 15, 541–52.

    Article  CAS  Google Scholar 

  • Jones J. E. and Corwin J. T. (1996) Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy.J. Neurosci. 16, 649–662.

    PubMed  CAS  Google Scholar 

  • Kalinec F., Kalinec G., and Kachar B. (1996) Development of organ of Corti and stria vascularis cell line from transgenic mice.Assoc. Res. Otolaryngol. Abstr. 19, 145.

    Google Scholar 

  • Kelley M. W., Xu X. M., Wagner M. A., Warchol M. E., and Corwin J. T. (1993) The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture.Development 119, 1041–1053.

    PubMed  CAS  Google Scholar 

  • Korsching S. (1993) The neurotrophic factor concept: a reexamination.J. Neurosci. 13, 2739–2748.

    PubMed  CAS  Google Scholar 

  • Lalwani A. K., Walsh B. J., Reilly P. G., Muzyczka N., and Mhatre A. N. (1996) Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig.Gene Ther. 3, 588–592.

    PubMed  CAS  Google Scholar 

  • Lambert P. (1994) Inner ear hair cell regeneration in a mammal: identification of a triggering factor.Laryngoscope 104, 701–717.

    Article  PubMed  CAS  Google Scholar 

  • Lanford PJ, Raz Y., Lindshell C., Weinmaster G., and Kelley M. (1997) Expression of notch and jagged correlates with development of hair cells in the organ of Corti.Soc. Neurosci. Abstr. 23, 1968.

    Google Scholar 

  • Leake P. A., Snyder R. L., Hradek G. T., and Rebscher S. J. (1992) Chronic intracochlear electrical stimulation in neonatally deafened cats: effects of intensity and stimulating electrode location.Hear. Res. 64, 99–117.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre P. P., Malgrange B., Staecker H., Moghadass M., Van de Water T. R., and Moonen G. (1994) Neurotrophins affect survival and neuritogenesis by adult injured auditory neurons in vitro.NeuroReport 5, 865–868.

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre P. P., Malgrange B., Staecker H., Moonen G., and Van de Water T. R. (1993) Retinoic acid stimulates regeneration of mammalian auditory hair cells [see comments].Science 260, 692–695.

    Article  PubMed  CAS  Google Scholar 

  • Lewis A., Frantz G., Radtke F., and Gao W.-Q. (1997) Expression patterns of notch family receptors and ligands during development of the mouse inner ear.Soc. Neurosci. Abstr. 23, 1968.

    Google Scholar 

  • Lewis J. (1991) Rules for the production of sensory cells.Ciba Foundation Symposium 160, 25–39; 40–53.

    PubMed  CAS  Google Scholar 

  • Low W., Dazert S., Baird A., and Ryan A. F. (1996) Basic fibroblast growth factor (FGF-2) protects rat cochlear hair cells in organotypical culture from aminoglycoside injury.J. Cell. Physiol. 167, 443–450.

    Article  PubMed  CAS  Google Scholar 

  • Magal E., Kuang R., Hever G., Collins F., and Louis J.-C. (1997) GDNF protects cochlear hair cells in animal models of ototoxicity.Assoc. Neurosci. Abstr. 23, 1822.

    Google Scholar 

  • Miller J. M., Chi D. H., O’Keeffe L. J., Kruszka P., Raphael Y., and Altschuler R. A. (1997) Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss.Int. J. Devel. Neurosci. 15, 631–43.

    Article  CAS  Google Scholar 

  • Minichiello L., Piehl F., Vazquez E., Schimmang T., Hokfelt T., Represa J., and Klein R. (1995) Differential effects of combined trk receptor mutations on dorsal root ganglion and inner ear sensory neurons.Development 121, 4067–4075.

    PubMed  CAS  Google Scholar 

  • Oesterle E. C., Tsue T. T., and Rubel E. W. (1997) Induction of cell proliferation in avian inner ear sensory epithelia by insulin-like growth factor-I and insulin.J. Compar. Neurol. 380, 262–274.

    Article  CAS  Google Scholar 

  • Oh S. H., Johnson R., and Wu D. K. (1996) Differential expression of bone morphogenetic proteins in the developing vestibular and auditory sensory organs.J. Neurosci. 16, 6463–6475.

    PubMed  CAS  Google Scholar 

  • Pirvola U., ArumÄe U., Moshnyakov M., Palgi J., Saarma M., and Ylikoski J. (1994) Coordinated expression and function of neurotrophins and their receptors in the rat inner ear during target innervation.Hear. Res. 75, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Pirvola U., Ylikoski J., Palgi J., Lehtonen E., ArumÄe U., and Saarma M. (1992) Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia.Proc. Natl. Acad. Sci. USA 89, 9915–9919.

    Article  PubMed  CAS  Google Scholar 

  • Raphael Y. (1992) Evidence for supporting cell mitosis in response to acoustic trauma in the avian inner ear.J. Neurocytol. 21, 663–671.

    Article  PubMed  CAS  Google Scholar 

  • Raphael Y., Frisancho J. C., and Roessler B. J. (1996) Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo.Neurosci. Lett. 207, 137–141.

    Article  PubMed  CAS  Google Scholar 

  • Rastel D., Abdouh A., Dahl D., and Romand R. (1993) An original organotypic culture method to study the organ of Corti of the newborn rat in vitro.J. Neurosci. Methods 47, 123–131.

    Article  PubMed  CAS  Google Scholar 

  • Richardson G. P. and Russell, I. J. (1991) Cochlear cultures as a model system for studying aminoglycoside induced ototoxicity.Hear. Res. 53, 293–311.

    Article  PubMed  CAS  Google Scholar 

  • Ruben R. J. (1967) Development of the inner ear of the mouse: a radioautographic study of terminal mitosis.Acta Otolarynhol. Suppl. 220, 1–44.

    Google Scholar 

  • Ryals B. M. and Rubel E. W. (1988) Hair cell regeneration after acoustic trauma in adult Coturnix quail.Science 240, 1774–1776.

    Article  PubMed  CAS  Google Scholar 

  • Ryan A. (1997) Transcription factors and the control of inner ear development.Sent. Cell Devl. Biol. 8, 249–256.

    Article  CAS  Google Scholar 

  • Sans A. and Chat M. (1982) Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography.J. Compar. Neurol. 206, 1–8.

    Article  CAS  Google Scholar 

  • Schecterson L. C. and Bothwell M. (1994) Neurotrophin and neurotrophin receptor mRNA expression in developing inner ear.Hear. Res. 73, 92–100.

    Article  PubMed  CAS  Google Scholar 

  • Schindler R. A., Gladstone H. B., Scott N., Hradek G. T., Williams H., and Shah S. B. (1995) Enhanced preservation of the auditory nerve following cochlear perfusion with nerve growth factors.Am. J. Otol. 16, 304–309.

    PubMed  CAS  Google Scholar 

  • Shoji F., Yamasoba T., Miller T., Altschuler R., Schacht T., Louis J.-C, and Magal E. (1997) The prevention of noise-induced deafness with growth factors: GDNF, BDNF, NT-3.Soc. Neurosci. Abstr. 27, 619.

    Google Scholar 

  • Snider W. D. (1994) Functions of the neurotrophins during nervous system development: What the knockouts are teaching us.Cell 77, 627–638.

    Article  PubMed  Google Scholar 

  • Sobkowicz H. M., Bereman B., and Rose J. E. (1975) Organotypic development of the organ of Corti in culture.J. Neurocytol. 4, 543–572.

    Article  PubMed  CAS  Google Scholar 

  • Song H. J., Ming G. L., and Poo M. M. (1997) cAMP-induced switching in turning direction of nerve growth cones.Nature 388, 275–279.

    Article  PubMed  CAS  Google Scholar 

  • Staecker H., Kopke R., Malgrange B., Lefebvre P., and Van de Water T. R. (1996) NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells.NeuroReport 7, 889–894.

    Article  PubMed  CAS  Google Scholar 

  • Stone J. S. and Cotanche D. A. (1994) Identification of the timing of S phase and the patterns of cell proliferation during hair cell regeneration in the chick cochlea.J. Compar. Neurol. 341, 50–67.

    Article  CAS  Google Scholar 

  • Stone J. S. Leano S. G., Baker L. P., and Rubel E. W. (1996) Hair cell differentiation in chick cochlear epithelium after aminoglycoside toxicity: in vivo and in vitro observations.J. Neurosci. 16, 6157–6174.

    PubMed  CAS  Google Scholar 

  • Verdi J. M., Ip N., Yancopoulos G. D., and Anderson D. J. (1994) Expression of trk in MAH cells lacking the p75 low-affinity nerve growth factor receptor is sufficient to permit nerve growth factor-induced differentiation to postmitotic neurons.Proc. Natl. Acad. Sci. USA 91, 3949–3953.

    Article  PubMed  CAS  Google Scholar 

  • Victoria L. V., Hansen M. R., Wu X., Abbas P. J., Gantz B. J., and Green S. H. (1997) Electrical stimulation increases neurotrophin expression in rat spiral ganglion neurons in vivo.Assoc. Otolaryngol. Res. Abstr. 20, 55.

    Google Scholar 

  • Walsh M. E. and Webster D. B. (1994) Exogenous GM1 ganglioside effects on conductive and sensorineural hearing losses.Hear. Res. 75, 54–60.

    Article  PubMed  CAS  Google Scholar 

  • Warchol M. E. and Corwin J. T. (1996) Regenerative proliferation in organ cultures of the avian cochlea: identification of the initial progenitors and determination of the latency of the proliferative response.J. Neurosci. 16, 5466–5477.

    PubMed  CAS  Google Scholar 

  • Warchol M. E., Lambert P. R., Goldstein B. J., Forge A., and Corwin J. T. (1993) Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans.Science 259, 1619–1622.

    Article  PubMed  CAS  Google Scholar 

  • Weisleder P. and Rubel E. W. (1992) Hair cell regeneration in the avian vestibular epithelium.Exper. Neurol. 115, 2–6.

    Article  CAS  Google Scholar 

  • Wheeler E. F., Bothwell M., Schecterson L. C., and Von Bartheld C. S. (1994) Expression of BDNF and NT-3 mRNA in hair cells of the organ of corti: quantitative analysis in developing rats.Hear. Res. 73, 46–56.

    Article  PubMed  CAS  Google Scholar 

  • Whitfield T., Haddon C., and Lewis J. (1997) Intercellular signals and cell-fate choices in the developing inner ear: origins of global and of fine-grained pattern.Sem. Cell Dev. Biol. 8, 239–247.

    Article  Google Scholar 

  • Wu D. K. and Oh S. H. (1996) Sensory organ generation in the chick inner ear.J. Neurosci. 16, 6454–6462.

    PubMed  CAS  Google Scholar 

  • Yamane H., Nakagawa T., Iguchi H., Shibata S., Takayama M., Nishimura K., and Nakai Y. (1995) In vivo regeneration of vestibular hair cells of guinea pig.Acta Otolaryngol. (Stockh) Suppl. 520, 174–177.

    Google Scholar 

  • Yamashita H. and Oesterle E. C. (1995) Induction of cell proliferation in mammalian inner-ear sensory epithelia by transforming growth factor alpha and epidermal growth factor.Proc. Natl. Acad. Sci. USA 92, 3152–3155.

    Article  PubMed  CAS  Google Scholar 

  • Ylikoski J., Pirvola U., Moshnyakov M., Palgi J., Arumae U., and Saarma M. (1993) Expression patterns of neurotrophin and their receptor mRNAs in the rat inner ear.Hear. Res. 65, 69–78.

    Article  PubMed  CAS  Google Scholar 

  • Zheng J. L. and Gao W.-Q. (1996) Differential damage to auditory neurons and hair cells by ototoxins and neuroprotection by specific neurotrophins in rat cochlear organotypic cultures.Eur. J. Neurosci. 8, 1897–1905.

    Article  PubMed  CAS  Google Scholar 

  • Zheng J. L. and Gao W.-Q. (1997) Analysis of rat vestibular rat hair cell development and regeneration using calretinin as an early marker.J. Neurosci. 17, 8270–8282.

    PubMed  CAS  Google Scholar 

  • Zheng J. L., Helbig C., and Gao W.-Q. (1997a) Induction of cell proliferation by fibroblast and insulin-like growth factors in pure rat inner ear epithelial cell cultures.J. Neurosci. 17, 216–226.

    PubMed  CAS  Google Scholar 

  • Zheng J. L., Lewis A., and Gao W.-Q. (1997b) Establishment of conditionally immortalized rat utricular epithelial cell lines using a retrovirusmediated gene transfer technique.Hear. Res.,117, 13–23.

    Article  Google Scholar 

  • Zheng J. L., Stewart R. R., and Gao W.-Q. (1995) Neurotrophin-4/5 enhances survival of cultured spiral ganglion neurons and protects them from cisplatin neurotoxicity.J. Neurosci. 15, 5079–5087.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, WQ. Therapeutic potential of neurotrophins for treatment of hearing loss. Mol Neurobiol 17, 17–31 (1998). https://doi.org/10.1007/BF02802022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02802022

Index Entries

Navigation