Skip to main content
Log in

Applications of the Air Lift Fermenter

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Since the first development of the airlift fermenter by Le Francois in 1955 (1), the applications have increased to cover most areas of fermentation. This configuration has likewise been developed into many different forms, including: (a) Concentric tube airlift (2); (b) external loop airlift (3); (c) jet loop reactor (4); and (d) propeller loop reactor (4).

The subject for discussion in this paper will be the concentric tube airlift, as shown in Fig. (1). This consists of a vertical cylindrical vessel incorporating a concentric draught tube into which is injected a flow of air or other gas mixture suitable for oxygenation. The resulting reduction in bulk density in the central riser causes the contents to move upward thus displacing the contents of the surrounding downcomer, which moves downward, thus inducing circulation of the total contents. This has the advantage of generating liquid mixing and gas transfer without the use of mechanical agitators.

The number of possible applications for the airlift fermenter has increased with the advent of genetic engineering techniques that result in new strains of unicellular organisms capable of producing many novel products. An almost universal requirement is the maintenance of absolute sterility, and the absence of agitation with associated shaft seals may be of benefit here. A typical property of some novel organisms is the sensitivity to shear stress of either the product (often a large, easily denatured protein) or the cells themselves, in which there may be an absence of a thick protective cell wall. The airlift fermenter should therefore be of use in these applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Francois, L. Mariller, L. G., and Mejane, J. V. (1955), French Patent no. 1, 102–200.

  2. Sinclair, C. G., and Ryder, D. N. (1975),Biotechnol. Bioeng. 17, 375.

    Article  CAS  Google Scholar 

  3. Lin, C. H., Fang, B. S., Wu, C. S., Fang, U. Y., Kuo, T. F., and Hu, K. C. Y. (1976)Biotechnol. Bioeng. 18, 1557.

    Article  Google Scholar 

  4. Blenke, H. (1979)Advances in Biochemical Engineering vol. 13. (Ghore, T. K., Fiechter, A., and Blakeborough, N., ed.), Springer Verlag, Berlin.

    Google Scholar 

  5. Bello, R. A., Robinson, C. W., and Moo-Young, M. (1984), inAdvances in Biotechnology, vol. I, p. 547.

    Google Scholar 

  6. Coulson, J. M., and Richardson, J. F. (1965), inChemical Engineering, vol. I, Pergamon, London, p. 1970.

    Google Scholar 

  7. Pirt, S. J. (1975),Principles of Microbe and Cell Cultivation, Blackwell Scientific, London.

    Google Scholar 

  8. Cooper, C. M., Fernstrom, G. A., and Miller, S. A. (1944),Ind. Eng. Chem. 36, 504.

    Article  CAS  Google Scholar 

  9. Slater, L. E. (1974),Food Eng. July, 68.

  10. Kohler, G., and Milstein, C. (1975),Nature (London)256, 495.

    Article  CAS  Google Scholar 

  11. Mach, J-P., Bucheggar, F., Farni, M., Ritschard, J., Berche, C., Lumbroso, J-D., Schreyer, M., Giradet, C., Accola, R., and Carrel, S. (1981),Immunol. Today, December, 239.

  12. Hill, C. R., Birch, J. R., and Benton, C. (1984) inBioactive Microbial Products III-Downstream Processing Special Publication of the Society for General Microbiology. Academic, London.

    Google Scholar 

  13. Marx, J. L. (1982),Science,216.

  14. Augenstein, D. C., Sinskey, A. J., and Wang, D. C. (1971),Biotech. Bioeng. 13, 409.

    Article  CAS  Google Scholar 

  15. Midler, M., and Finn, R. K. (1966)Biotech. Bioeng. 8, 71.

    Article  Google Scholar 

  16. Fazekas de St. Groth, S. (1983),J. Immunol. Methods 57, 121.

    Article  CAS  Google Scholar 

  17. Boraston, R., Thompson, P. W., Garland, S., and Birch, J. R. (1983)Dev. Biol. Stand. 55, 103.

    CAS  Google Scholar 

  18. Sacks, S. H., and Lennox, E. S. (1981),Vox Sanguinic 40, 99.

    Article  CAS  Google Scholar 

  19. Donaldson, T. L., Boonstra, E. F., and Hammond, J. M. (1980),J. Colloid. Interface. Sci. 74, 2, 441.

    Article  CAS  Google Scholar 

  20. Virkar, P. D., Narendranatham, T. J., Hoare, M., and Dunmill, P. (1981),Biotech. Bioeng. 23, 425.

    Article  CAS  Google Scholar 

  21. Birch, J. R., Lambert, K., Boraston, R., Thompson, P. W., Garland, S., and Kenney, A. (1985),Proceedings of the Nato Advanced Studies Institute. Plenum, In press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wood, L.A., Thompson, P.W. Applications of the Air Lift Fermenter. Appl Biochem Biotechnol 15, 131–143 (1987). https://doi.org/10.1007/BF02801314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801314

Keywords

Navigation