Metallurgical Transactions A

, Volume 23, Issue 2, pp 669–680 | Cite as

An analytical model for the interaction between an insoluble particle and an advancing solid/liquid interface

  • D. Shangguan
  • S. Ahuja
  • D. M. Stefanescu


In this article, the behavior of particles in front of an advancing solidJliquid interface was analyzed. In the analytical model presented, the critical velocity for the transition from particle pushing to engulfment by the interface was calculated as a function of relevant material parameters and processing variables. In particular, the effect of the difference in the thermal properties of the particle and the matrix on the particle/interface interaction was examined. It was demonstrated that the presence of particles could destabilize the interface which, in turn, affected the behavior of particles at the interface. Based on the analysis, a particle behavior map was constructed to illustrate the complex particle behaviors in different material systems under various growth conditions. Theoretical predictions were compared against experimental results obtained in transparent organic materials as well as in metallic systems. The relevance of these observations to the melt processing of particulate-reinforced metal matrix composites (MMCs) was discussed.


Metallurgical Transaction Interfacial Energy Critical Velocity Planar Interface Solidification Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.M. Stefanescu, B.K. Dhindaw, S.A. Kacar, and A. Moitra:Metall. Trans. A, 1988, vol. 19A, pp. 2847–55.Google Scholar
  2. 2.
    B.K. Dhindaw, D.M. Stefanescu, A.K. Singh, and P.A. Curreri:Metall. Trans. A, 1988, vol. 19A, pp. 2839–46.Google Scholar
  3. 3.
    N.L. Frier, Y. Shiohara, and K.C. Russell: inMaterials Research Society International Meeting on Advanced Materials, MRS, 1989, vol. 4, pp. 47–52.Google Scholar
  4. 4.
    M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974.Google Scholar
  5. 4a.
    M.C. Flemings:Solidification Processing, McGraw-Hill, New York, NY, 1974.Google Scholar
  6. 5.
    A.E. Corte:J. Geophys. Res., 1962, vol. 67 (3), pp. 1085–90.CrossRefGoogle Scholar
  7. 6.
    V.L. Brostein, Y.A. Itkin, and G.S. Ishkov:J. Cryst. Growth, 1981, vol. 52, pp. 345–49.CrossRefGoogle Scholar
  8. 7.
    D. Shangguan and D.M. Stefanescu: inProc. XXIIICHMT Int. Symp. on Manufacturing and Materials Processing, Dubrovnik, Yugoslavia, Aug. 1990, in press.Google Scholar
  9. 8.
    D.M. Stefanescu, A. Moitra, A.S. Kacar, and B.K. Dhindaw:Metall. Trans. A, 1990, vol. 21A, pp. 231–39.Google Scholar
  10. 9.
    B.K. Dhindaw, A. Moitra, D.M. Stefanescu, and P. Curreri:Metall. Trans. A, 1988, vol. 19A, pp. 1899–1904.Google Scholar
  11. 10.
    D.M. Stefanescu and F. Rana: inMicrostructural Development and Control in Materials Processing, D.R. Durham and A. Saigal, eds., ASME, Fairfield, NJ, 1989, pp. 95–102.Google Scholar
  12. 11.
    D. Shangguan and D.M. Stefanescu:Metall. Trans. B, 1991, vol. 22B, pp. 385–88.CrossRefGoogle Scholar
  13. 12.
    D.R. Uhlmann, B. Chalmers, and K.A. Jackson:J. Appl. Phys., 1964, vol. 35 (10), pp. 2986–93.CrossRefGoogle Scholar
  14. 13.
    O.P. Fedorov:J. Cryst. Growth, 1990, vol. 102, pp. 857–61.CrossRefGoogle Scholar
  15. 14.
    S.N. Omenyi and A.W. Neumann:J. Appl. Phys., 1976, vol. 47 (9), pp. 3956–62.CrossRefGoogle Scholar
  16. 15.
    A.M. Zubko, V.G. Lobanov, and V.V. Nikonova:Sov. Phys. Crystallogr., 1973, vol. 18 (2), pp. 239–41.Google Scholar
  17. 16.
    J. Cisse and G.F. Boiling:J. Cryst. Growth, 1971, vol. 11, pp. 25–28.CrossRefGoogle Scholar
  18. 17.
    R.R. Gilpin:J. Colloid Interface Sci., 1980, vol. 74 (1), pp. 44–63.CrossRefGoogle Scholar
  19. 18.
    Ch. Korber, G. Rau, M.D. Cosman, and E.G. Cravalho:J. Cryst. Growth, 1985, vol. 72, pp. 649–62.CrossRefGoogle Scholar
  20. 19.
    G.F. Boiling and J.A. Cisse:J. Cryst. Growth, 1971, vol. 10, pp. 56–66.CrossRefGoogle Scholar
  21. 20.
    J. Potschke and V. Rogge:J. Cryst. Growth, 1989, vol. 94, pp. 726–38.CrossRefGoogle Scholar
  22. 21.
    R. Sasikumar, T.R. Ramamohan, and B.C. Pai:Acta Metall., 1989, vol. 37 (7), pp. 2085–91.CrossRefGoogle Scholar
  23. 22.
    A.A. Chernov, D.E. Temkin, and A.M. Mel’nikova:Sov. Phys. Crystallogr., 1976, vol. 21 (4), pp. 369–73.Google Scholar
  24. 23.
    R.B. Bird, W.E. Stewart, and E.N. Lightfoot:Transport Phenomena, John Wiley & Sons, New York, NY, 1960.Google Scholar
  25. 24.
    Handbook of Chemistry and Physics, 67th ed., CRC Press, Boca Raton, FL, 1986.Google Scholar
  26. 25.
    I. Jin and D.J. Lloyd: inProc. Int. Conf., Montreal, PQ, Canada, September 17–29, 1990, J. Masounave and F.G. Hamel, eds., ASM INTERNATIONAL, Metals Park, OH, 1990.Google Scholar
  27. 26.
    D.J. Lloyd:Compos. Sci. Technol., 1989, vol. 35, pp. 159–79.CrossRefGoogle Scholar
  28. 27.
    S. Ahuja, D. Shangguan, and D.M. Stefanescu: inAdvanced Metal Matrix Composites for Elevated Temperatures, ASM Conference Proceedings, Cincinnati, OH, October 20–24, 1991, pp. 205–12.Google Scholar
  29. 28.
    D.J. Jeffrey and A. Acrivos:J. Amer. Inst. Chem. Eng., 1976, vol. 22 (3), pp. 417–32.Google Scholar
  30. 29.
    J.F. Richardson and W.N. Zaki:Chem. Eng. Sci., 1954, vol. 3, pp. 65–73.CrossRefGoogle Scholar
  31. 30.
    X. Guo, D. Shangguan, and D.M. Stefanescu: The University of Alabama, Tuscaloosa, AL, unpublished research, 1991.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1992

Authors and Affiliations

  • D. Shangguan
    • 1
  • S. Ahuja
    • 2
  • D. M. Stefanescu
    • 2
  1. 1.Electronics DivisionFord Motor CompanyDearborn
  2. 2.Department of Metallurgical and Materials EngineeringThe University of AlabamaTuscaloosa

Personalised recommendations