Skip to main content
Log in

Strength and microstructure of powder metallurgy processed restacked Cu-Nb microcomposites

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Powder metallurgy (PM) was used to fabricate Cu-Nb microcomposites both at the laboratory and intermediate industrial scales. Ultimate tensile strengths (UTSs) of 1.6 and 1.035 GPa were obtained for the laboratory-and intermediate-scale composites, respectively. Filament morphology and the microstructure of various microcomposites were examined with transmission electron microscopy (TEM), scanning electron microscopy (SEM), and optical microscopy. In the early stages of the fabrication process, a plain strain condition causes the Nb fibers to attain a ribbonlike shape, but in the later stages, an axially symmetric flow prevails. Beyond the Nb filament thickness of 5 to 10 nm, the overall areal reduction was observed to occur without any significant reduction in the Nb filament thickness. Effects of heat treatment and the extent of spheroidization at different temperatures were studied. Contributions of various strengthening mechanisms on PM-processed Cu-Nb composites were analyzed. Work hardening, high strength of Nb filaments, and dispersion-type hardening were the dominant factors. Our strengthening model, which involves a superposition of the different contributions, agreed with our measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bevk, J.P. Harbison, and J.L. Bell:J. Appl. Phys., 1978, vol. 49, pp. 6031–38.

    Article  CAS  Google Scholar 

  2. W.A. Spitzig, A.R. Pelton, and F.C. Laabs:Acta Metall., 1987, vol. 35, pp. 2427–42.

    Article  CAS  Google Scholar 

  3. P.D. Funkenbusch, J.K. Lee, and T.H. Courtney:Metall. Trans. A, 1987, vol. 18A, pp. 1249–56.

    CAS  Google Scholar 

  4. S. Foner:Appl. Phys. Lett., 1986, vol. 49, pp. 982–83.

    Article  CAS  Google Scholar 

  5. P.D. Krotz, W.A. Spitzig, and F.C. Laabs:Mater. Sci. Eng., 1989, vol. A110, pp. 37–47.

    CAS  Google Scholar 

  6. P.F. Levi:J. Appl. Phys., 1960, vol. 31, pp. 1469–71.

    Article  Google Scholar 

  7. H. Hillmann: inSuperconductor Material Science, S. Foner and B.B. Schwartz, eds., Plenum Press, New York, NY, 1981, pp. 299–309.

    Google Scholar 

  8. S. Pourrahimi: Ph.D. Thesis, Northeastern University, Boston, MA, 1991.

    Google Scholar 

  9. S. Pourrahimi, H. Nayeb-Hashemi, and S. Foner:J. Mater. Sci. Lett., 1990, vol. 9, pp. 1484–87.

    Article  CAS  Google Scholar 

  10. C.V. Renaud, E. Gregory, and J. Wong: inAdvanced Cryogenic Engineering Materials, A.F. Clark and R.P. Reed, eds., Plenum Press, New York, NY, 1988, pp. 435–39.

    Google Scholar 

  11. P.D. Funkenbusch and T.H. Courtney:Scripta Metall., 1989, vol. 23, pp. 1719–24.

    Article  CAS  Google Scholar 

  12. L.S. Chumbley, H.L. Downing, W.A. Spitzig, and J.D. Verhoeven:Mater. Sci. Eng., 1989, vol. Al 17, pp. 59–65.

    Google Scholar 

  13. R. Roberge: inSuperconductor Material Science, S. Foner and B.B. Schwartz, eds., Plenum Press, New York, NY, 1981, pp. 407–10.

    Google Scholar 

  14. W.F. Hosford:Trans. TMS-AIME, 1964, vol. 230, pp. 12–15.

    CAS  Google Scholar 

  15. C.L.H. Thieme: Ph.D. Thesis, Twente University, Enschede, The Netherlands, 1988.

    Google Scholar 

  16. H. Scher and R. Zallen:J. Chem. Phys., 1970, vol. 53, pp. 3759–63.

    Article  CAS  Google Scholar 

  17. J.D. Verhoeven, H.L. Downing, L.S. Chumbley, and E.D. Gibson:J. Appl. Phys., 1989, vol. 65 (3), pp. 1293–1301.

    Article  CAS  Google Scholar 

  18. G.E. Dieter:Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, NY, 1986, pp. 237–38.

    Google Scholar 

  19. D.L. Holt:J. Appl. Phys., 1970, vol. 41, pp. 3197–3202.

    Article  Google Scholar 

  20. M.R. Staker and D.L. Holt:Acta Metall., 1972, vol. 20, pp. 569–78.

    Article  CAS  Google Scholar 

  21. L.S. Chumbley, W.A. Spitzig, J.D. Verhoeven, and F.C. Laabs: Presented at the 120th TMS Annual Meeting, New Orleans, LA, Feb. 1991, unpublished research.

  22. Designation E8-89b,Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1989, pp. 136–39.

  23. W.A. Spitzig, J.D. Verhoeven, C.L. Trybus, and L.S. Chumbley:Scripta Metall., 1990, vol. 24, pp. 1171–74 and 1181–82.

    Article  CAS  Google Scholar 

  24. P.D. Funkenbusch and T.H. Courtney:Scripta Metall, 1990, vol. 24, pp. 1175–80 and 1183–84.

    Article  CAS  Google Scholar 

  25. N.F. Mott:Trans. TMS-AIME, 1960, vol. 218, pp. 962–67.

    CAS  Google Scholar 

  26. H. Wiedersich:J. Met., 1964, vol. 16, pp. 425–30.

    CAS  Google Scholar 

  27. M.V. Yokelson and M. Balicki:Wire and Wire Products, 1955, pp. 1179–94.

  28. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, New York, NY, 1982, pp. 20–25.

    Google Scholar 

  29. A. Kelly and R.B. Robinson:Strengthening Methods in Crystals, Applied Science Publishing LTD, London, 1971, pp. 435–39.

    Google Scholar 

  30. P.M. Kglly:Scripta Metall., 1972, vol. 6 (8), pp. 647–56.

    Article  Google Scholar 

  31. E. Orowan:Symposium on Internal Stresses in Metals and Alloys, Institute of Metals, London, 1948, pp. 451–55.

    Google Scholar 

  32. D. Hall:Introduction to Dislocations, 2nd ed., Pergamon Press, New York, NY, 1975, p. 90.

    Google Scholar 

  33. L.E Murr:Metall. Trans. A, 1975, vol. 6A, pp. 505–13.

    CAS  Google Scholar 

  34. W.M. Baldwin, Jr.:Acta Metall., 1958, vol. 6, pp. 139–41.

    Article  Google Scholar 

  35. A.W. Thompson:Acta Metall., 1975, vol. 23, pp. 1337–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourrahimi, S., Nayeb-Hashemi, H. & Foner, S. Strength and microstructure of powder metallurgy processed restacked Cu-Nb microcomposites. Metall Trans A 23, 573–586 (1992). https://doi.org/10.1007/BF02801175

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801175

Keywords

Navigation