Skip to main content
Log in

Evolution of dislocation structures and deformation behavior of iron at different temperatures: Part II. dislocation density and theoretical analysis

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The evolution of dislocation density in iron deformed at 173 K and at room temperature has been examined by transmission electron microscopy (TEM). At room temperature, the dislocation density in the cell walls increases as the deformation progresses up to large strains, whereas in cell interiors, the density evolves toward a saturation value. A linear relationship exists between the flow stress and the square root of total dislocation density both at 173 K and room temperature. The dependence of deformation behavior on the evolution of dislocation structures is discussed in terms of a model considering the dislocation distribution during deformation. Comparison of the calculated result using this model with the experimental curve at room temperature gives excellent agreement. The changes of deformation behaviors at different temperatures can be described by the effect of temperature on the evolution of dislocation distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Lan, H.J. Klaar, and W. Dahl:Metall. Trans. A., 1992, vol. 23A, pp. 537–44.

    CAS  Google Scholar 

  2. Y. Lan, H.J. Klaar, and W. Dahl:Scripta Metall., 1990, vol. 24, pp. 337–42.

    Article  CAS  Google Scholar 

  3. U.F. Kocks:J. Eng. Mater. Technol. (ASME), 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  4. U.F. Kocks and H. Mecking: inStrength of Metals and Alloys, P. Haasen, V. Gerold, and G. Kostorz, eds., Pergamon Press, Oxford, United Kingdom, 1979, vol. 1, pp. 345–50.

    Google Scholar 

  5. H. Mecking and U.F. Kocks:Acta Metall., 1981, vol. 29, pp. 1865–75.

    Article  CAS  Google Scholar 

  6. H. Mecking: inDislocation Modelling of Physical Systems, M.F. Ashby, R. Bullough, C.S. Hartley, and J.P. Hirth, eds., Pergamon Press, Oxford, United Kingdom, 1981, pp. 197–211.

    Google Scholar 

  7. F.B. Prinz and A.S. Argon:Acta Metall., 1984, vol. 32, pp. 1021–28.

    Article  CAS  Google Scholar 

  8. W.D. Nix, J.C. Gibeling, and D.A. Hughes:Metall. Trans. A, 1985, vol. 16A, pp. 2215–26.

    CAS  Google Scholar 

  9. D. Kuhlmann-Wilsdorf: inWork Hardening, J.P. Hirth and J. Weertman, eds., Gordon and Breach, New York, NY 1968, pp. 97–139.

    Google Scholar 

  10. J.E. Bailey and P.B. Hirsth:Phil. Mag., 1960, vol. 5, pp. 485–97.

    Article  CAS  Google Scholar 

  11. P. Haasen: inStrength of Metals and Alloys, Proc. ICSMA-8, P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds., Pergamon Press, New York, NY, 1988, pp. 343–48.

    Google Scholar 

  12. A.H. Cottrell:Dislocations and Plastic Flow in Crystals, Clarendon Press, Oxford, United Kingdom, 1953.

    Google Scholar 

  13. J.W. Hutchinson:J. Mech. Phys. Solids, 1964, vol. 12, pp. 25–33.

    Article  Google Scholar 

  14. G. Langford and M. Cohen:Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  15. George Langford and Morris Cohen:Metall. Trans. A, 1975, vol. 6A, pp. 901–10.

    CAS  Google Scholar 

  16. A.S. Keh and S. Weissmann: inElectron Microscopy and Strength of Crystals, G. Thomas and J. Washburn, eds., Interscience, New York, NY, 1963, pp. 231–300.

    Google Scholar 

  17. D.J. Dingley and D. McLean:Acta Metall., 1967, vol. 15, pp. 885–901.

    Article  CAS  Google Scholar 

  18. J.P. Bailon, A. Loyer, and J.M. Dorlot:Mater. Sci. Eng., 1971, vol. 8, pp. 288–98.

    Article  CAS  Google Scholar 

  19. W. Roberts, S. Karlsson, and Y. Bergström:Mater. Sci. Eng., 1973, vol. 11, pp. 247–54.

    Article  CAS  Google Scholar 

  20. M. Döner, H. Chang, and H. Conrad:Metall. Trans. A, 1975, vol. 6A, pp. 1017–28.

    Google Scholar 

  21. J. Gil Sevillano, P. van Houtte, and E. Aeronoudt: inProgress in Materials Science, J.W. Christian, P. Haasen, and T.B. Massalski, eds., Pergamon Press, New York, NY, 1981, vol. 25, pp. 69–412.

    Google Scholar 

  22. A.D. Rollett, U.F. Kocks, J.D. Embury, M.G. Stout, and R.D. Doherty:Strength of Metals and Alloys, Proc. ICSMA-8, P.O. Kettunen, T.K. Lepistö, and M.E. Lehtonen, eds., Pergamon Press, New York, NY, 1988, pp. 433–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lan, Y., Klaar, H.J. & Dahl, W. Evolution of dislocation structures and deformation behavior of iron at different temperatures: Part II. dislocation density and theoretical analysis. Metall Trans A 23, 545–549 (1992). https://doi.org/10.1007/BF02801172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801172

Keywords

Navigation