Skip to main content
Log in

Dissolution of particles in binary alloys: part I. computer simulations

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A detailed numerical study has been made of the dissolution kinetics of particles in binary alloys during isothermal annealing. In earlier models, the assumption was made that the dissolution reaction could be described by the dissolution of only one particle in an infinite matrix or the dissolution of a regular array of particles of equal size. This assumption has been relaxed and a log-normal size distribution of particles has been introduced instead. The calculations have been done numerically by applying a finite difference technique to a spherical particle in a spherical cell of finite size. The presence of a size distribution of particles was found to have a great effect on the dissolution kinetics and, therefore, must be included in a reliable model for the dissolution of particles. The results have been presented in diagrams, giving the volume fraction as a function of the dimensionless annealing time with the geometrical standard deviation as a parameter, and thus should be useful in making accurate predictions of the dissolution kinetics of binary alloys. The curves can be used for all volume fractions provided that all of the particles can be dissolved completely at the temperature considered. Also, equations have been derived that can easily be used to give an estimate of the annealing time to dissolve 90 pct of the initial volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Thomas and M.J. Whelan:Phil. Mag., 1961, vol. 6, pp. 1103–14.

    Article  CAS  Google Scholar 

  2. H.B. Aaron:Met. Sci. J., 1968, vol. 2, pp. 192–98.

    Article  CAS  Google Scholar 

  3. M.J. Whelan:Met. Sci. J., 1969, vol. 3, pp. 95–97.

    CAS  Google Scholar 

  4. H.B. Aaron and G.R. Kotier:Met. Sci. J., 1970, vol. 4, pp. 222–25.

    CAS  Google Scholar 

  5. F.V. Nolfi, P.G. Shewmon, and J.S. Foster:Trans. AIME, 1969, vol. 245, pp. 1427–33.

    CAS  Google Scholar 

  6. Frank V. Nlfi, Jr., Paul G. Shewmon, and James S. Foster:Metall. Trans., 1970, vol. 1, pp. 789–800.

    Google Scholar 

  7. Frank V. Nlfi, Jr., Paul G. Shewmon, and James S. Foster:Metall. Trans., 1970, vol. 1, pp. 2291–98.

    Article  Google Scholar 

  8. S.N. Singh and M.C. Flemings:Trans. AIME, 1969, vol. 245, pp. 1803–09.

    CAS  Google Scholar 

  9. S.N. Singh and M.C. Flemings:Trans. AIME, 1969, vol. 245, pp. 1811–19.

    CAS  Google Scholar 

  10. S.N. Singh. B.P. Bardes, and M.C. Flemings:Metall. Trans., 1970, vol. 1, pp. 1383–88.

    CAS  Google Scholar 

  11. E.G. Fuchs and A. Roösz:Metall. Trans., 1972, vol. 3, pp. 1019–20.

    Article  CAS  Google Scholar 

  12. R.A. Tanzilli and R.W. Heckel:Trans. AIME, 1968, vol. 242, pp. 2313–21.

    CAS  Google Scholar 

  13. J. Ågren:J. Phys. Chem. Solids, 1982, vol. 43, pp. 385–91.

    Article  Google Scholar 

  14. J. Ågren:Aeta Metall., 1982, vol. 30, pp. 841–51.

    Article  Google Scholar 

  15. J. Ågren:Mater. Sci. Eng., 1982, vol. 55, pp. 135–41.

    Article  Google Scholar 

  16. J. Ågren and G.P. Vassilev:Mater. Sci. Eng., 1984, vol. 64, pp. 95–103.

    Article  Google Scholar 

  17. J. Ågren, H. Abe, T. Suzuki, and Y. Sakuma:Metall. Trans. A, 1986, vol. 17A, pp. 617–20.

    Google Scholar 

  18. J. Ågren:Scand. J. Metall., 1990, vol. 19, pp. 2–8.

    Google Scholar 

  19. D.L. Baty, R.A. Tanzilli, and R.W. Heckel:Metall. Trans., 1970, vol. 1, pp. 1651–56.

    Article  CAS  Google Scholar 

  20. E.E. Underwood:Quantitative Sterelogy, Addison-Wesley, Reading, MA, 1970, pp. 119–23.

    Google Scholar 

  21. S.W. Patankar: inNumerical Heat Transfer and Fluid Flow, M. A. Phillips and E.M. Millman, eds., Hemisphere, New York, NY, 1980.

    Google Scholar 

  22. H.E. Exner:Int. Metall. Rev., 1972, vol. 17, pp. 25–42.

    Google Scholar 

  23. L.C. Brown:Metall. Trans. A, 1984, vol. 15A, pp. 449–58.

    CAS  Google Scholar 

  24. U.H. Tundal and N. Ryum:Metall. Trans. A, 1992, vol. 23A, pp. 445–49.

    CAS  Google Scholar 

  25. G. Burger, E. Koken, D.S. Wilkinson, and J.D. Embury: inAdvances in Phase Transitions, J.D. Embury and G.R. Purdy, eds., Pergamon Press, New York, NY, 1988, p. 257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tundal, U.H., Ryum, N. Dissolution of particles in binary alloys: part I. computer simulations. Metall Trans A 23, 433–444 (1992). https://doi.org/10.1007/BF02801160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02801160

Keywords

Navigation