Skip to main content
Log in

Novel aromatic polymers for immobilizing Β-D-glucosidase and their possible application to cellulolysis

  • Poster Papers
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We have synthesized, by enzymic and chemical means, a variety of novel polyaromatic-enzyme complexes that are extremely stable and show promise in the conversion of cellulose to glucose. Thus we have prepared a number of homo- and heteropolymeric supports (involvingl-tyrosine, pyrogallol, resorcinol, phloroglucinol, orcinol, catechol, protocatechuic acid, and various hydroxybenzoic acids) and discovered that, for example, a resorcinol-Β-d-glucosidase copolymer has high stability combined with lowK m (10.5 mM vs commercial soluble (3-d-glucosidase 9.3 mM) and high Vmax values (104 Μmol ρNP mg-1H-1 vs 85 Μmol ρNP mg-1H-1). These properties are enhanced when the copolymer is complexed with bentonite clay. The kinetic constants of the resorcinol-Β-d-glucosidase copolymer-bentonite complex wereK m = 9.6 mM andV max = 73.5 Μmol ρNP mg-1H-1. Stability has been assessed against proteolysis, organic solvents, elevated temperatures, storage, and incorporation into fresh soil.

A cellulase preparation fromTrichoderma viride has also been copolymerized with a variety of phenolic macromolecules and displays varying degrees of stability and activity against carboxymethyl cellulose.

The resorcinol Β-d-glucosidase-copolymer was immobilized on a PM10 ultrafiltration membrane (K m = 16.8 mM; Vmax = 42.4 (Μmol ρNP mg-1H-1) and showed enhanced thermostability, a broader pH range for maximal activity, and could be reused without loss of activity. An ultrafiltration cell, containing the membrane-immobilized resorcinol-Β-d-glucosida se copolymer, can be operated as a continuous reactor with substrate flow rates from 0.1 to 0.7 mL min-1 without decrease in product formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, J.M., Burns, R.G. Novel aromatic polymers for immobilizing Β-D-glucosidase and their possible application to cellulolysis. Appl Biochem Biotechnol 9, 413 (1984). https://doi.org/10.1007/BF02799002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02799002

Keywords

Navigation