Biological Trace Element Research

, Volume 2, Issue 2, pp 121–135 | Cite as

The role of dietary copper, manganese, selenium, and vitamin E in lipid peroxidation in tissues of the rat

  • D. I. Paynter


The role of dietary Cu and Mn in maintaining tissue integrity, through the effects of these metals on activity of the superoxide dismutase (SOD) enzyme, and their interactions in peroxidative pathways involving Se and vitamin E was investigated. Weanling rats were fed diets deficient in Mn, Cu, Se, and/or vitamin E for 35 days, in a factorial experimental design. Dietary effects on peroxidation, measured in mitochondrial fractions prepared from liver and heart tissue, were compared with changes in the activities of glutathione peroxidase and the Cu and MnSOD enzymes.

Decreased heart MnSOD and CuSOD activities, resulting from dietary Mn and Cu deficiencies, were both associated with increased peroxidation. Adequate Se (and glutathione peroxidase activity) prevented the peroxidation associated with either of these deficiencies, but was ineffective with a combined Cu−Mn deficiency. These effects of Se were only observed in tissue lacking glutathione transferase activity. Effects of Cu, Mn, and Se on peroxidation appeared to be present at both levels of vitamin E, although in both tissues, vitamin E deficiency greatly increased the overall peroxidation. Comparison of these in vitro peroxidation results with the deficiency associated lesions observed in vivo indicates that changes in SOD activities and peroxidation pathways may be the dominant cause of these lesions in only some cases. In others, the roles of Cu and Mn in different metabolic pathways appear to be of greater importance.

Index Entries

Copper, role in rat lipid peroxidation manganese, role in rat lipid peroxidation selenium, role in rat lipid peroxidation vitamin E, role in rat lipid peroxidation dietary deficiencies, of Cu, Mn, Se, and vitamin E, and lipid peroxidation interactions, of Cu, Mn, Se, and vitamin E in lipid peroxidation peroxidation mechanisms of lipid, role of Cu, Mn, Se, and vitamin E in 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. W. Kellogg and I. Fridovich,J. Biol. Chem. 252, 6721 (1977).PubMedGoogle Scholar
  2. 2.
    D. D. Tyler,FEBS Lett. 51, 180 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    T. C. Pederson and S. D. Aust,Biochem. Biophys. Res. Commun. 52, 1071 (1973).PubMedCrossRefGoogle Scholar
  4. 4.
    J. G. Bieri,Nature 184, 1148 (1959).PubMedCrossRefGoogle Scholar
  5. 5.
    J. T. Rotruck, A. L. Pope, H. E. Ganther, and W. G. Hoekstra,J. Nutr. 102, 689 (1972).PubMedGoogle Scholar
  6. 6.
    C. F. Combs and M. L. Scott,J. Nutr. 104, 1292 (1974).PubMedGoogle Scholar
  7. 7.
    R. A. Weisiger and I. Fridovich,J. Biol. Chem. 248, 3582 (1973).PubMedGoogle Scholar
  8. 8.
    D. I. Paynter, R. J. Moir, and E. J. Underwood,J. Nutr. 109,1566 (1979).Google Scholar
  9. 9.
    D. I. Paynter,J. Nutr. 110, 437 (1980).PubMedGoogle Scholar
  10. 10.
    D. I. Paynter, and G. B. Martin,Biol. Trace Element Res. 2, (1980) (in press).Google Scholar
  11. 11.
    M. L. Quaife and P. L. Harris,Ind. Eng. Chem., Anal. Ed. 18, 707 (1969).CrossRefGoogle Scholar
  12. 12.
    T. Noguchi, A. H. Cantor, and M. L. Scott,J. Nutr. 103, 1502 (1973).PubMedGoogle Scholar
  13. 13.
    K. M. Wilbur, F. Bernheim, and O. W. Shapiro,Arch. Biochem. 24, 305 (1949).PubMedGoogle Scholar
  14. 14.
    C. K. Chow and A. L. Tappel,Lipids 7, 518 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  16. 16.
    E. Beutler, O. Duron, and B. M. Kelly,J. Lab. Clin. Med. 61, 882 (1963).PubMedGoogle Scholar
  17. 17.
    J. M. McCord and I. Fridovich,J. Biol. Chem. 244, 6049 (1969).PubMedGoogle Scholar
  18. 18.
    G. B. Storer,Biochem. Med. 11, 71 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    J. H. Watkinson,Anal. Chem. 38, 92 (1966).PubMedCrossRefGoogle Scholar
  20. 20.
    G. W. Snedecor and W. G. Cochran, inStatistical Methods, Iowa State University Press, Ames, Iowa, 1967, pp. 359–361.Google Scholar
  21. 21.
    A. Petkau and W. S. Chelack,Biochem. Biophys. Acta 433, 445 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    J. A. Fee and H. D. Teitelbaum,Biochem. Biophys. Res. Commun. 49, 150 (1972).PubMedCrossRefGoogle Scholar
  23. 23.
    A. L. Tappel,Fed. Proc. 32, 1870 (1973).PubMedGoogle Scholar
  24. 24.
    J. R. Prohaska and H. E. Ganther,Biochem. Biophys. Res. Commun. 76, 437 (1977).CrossRefGoogle Scholar
  25. 25.
    R. A. Lawrence and R. F. Burk,J. Nutr. 108,211 (1978).PubMedGoogle Scholar
  26. 26.
    H. E. Ganther, D. G. Hafeman, R. A. Lawrence, R. E. Serfass, and W. G. Hoekstra, inTrace Elements in Human Health and Disease, A. S. Prasad, ed., Academic Press, New York, 1976. pp. 165–234.Google Scholar
  27. 27.
    N. Tateishi, T. Higashi, A. Naruse, K. Nakashima, H. Shiozaki, and Y. Sakamoto,J. Nutr. 107, 51 (1977).PubMedGoogle Scholar
  28. 28.
    H. W. Hulan and J. K. G. Kramer,Lipids 12, 951 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Y. Lei,J. Nutr. 108, 232 (1978).PubMedGoogle Scholar
  30. 30.
    K. W. J. Wahle and N. T. Davies,Brit, J. Nutr. 34, 105 (1975).Google Scholar
  31. 31.
    Underwood, E. J. (1977) inTrace Elements in Human and Animal Nutrition, 4th edition, Academic Press, New York, 1977, pp. 181–182.Google Scholar

Copyright information

© The Humana Press Inc 1980

Authors and Affiliations

  • D. I. Paynter
    • 1
  1. 1.“Attwood” Veterinary Research LaboratoryWestmeadowsAustralia

Personalised recommendations