Skip to main content
Log in

Continuous production of lactic acid in a cell recycle reactor

  • Review
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The production of lactic acid from glucose has been demonstrated using a CSTR (continuous stirred-tank reactor) with cell recycle. Studies were conducted withLactobacillus delbrueckii at a fermentation temperature of 42°C and a pH of 6.25. A cell density of 140 g dry weight/L and a volumetric productivity of 150 g/L.h, with complete glucose consumption, were obtained. It was not possible to obtain a lactic acid concentration above 60 g/L because of product inhibition. A cell purge was not necessary to maintain high viability bacteria culture or to obtain a steady state. At steady state the net cell growth appeared to be negligible. The specific glucose consumption for cell maintenance was 0.33 g glucose/g cells-h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Bleed blow/reactor volume (h-1)

D :

Dilution rate (h-1)

k D :

Specific death rate (h-1)

L :

Lactic acid concentration (g/L)

m :

Maintenance coefficient (g/g.h)

So :

Initial glucose concentration (g/L)

S :

Final glucose concentration (g/L)

t :

Time (h)

μ:

Specific growth rate (h-1)

X :

Biomass concentration (g/L)

Y L/S :

Lactic acid yield (g lactic acid produced/g glucose consumed)

YX/S :

Biomass yield (g cells produced/g glucose consumed)

References

  1. I. N. Mark, D. E. Othmer, C. G. Overberger, and G. T. Seaborg (1981), Hydrocarboxylic Acid, Lactic Acid, inEncyclopedia of Chemical Technology, Vol. 13, 3rd Ed. Wiley.

  2. S. S. Stenroos, Y. Y. Linko, and P. Linko,Biotechnol. Lett. 4, 159–164 (1982).

    Article  CAS  Google Scholar 

  3. T. B. Vick Roy, H. W. Blanch, and C. R. Wilke,Biotechnol. Lett. 4, 483–488 (1982).

    Article  CAS  Google Scholar 

  4. M. R. Friedmann and E. L. Gaden,Biotechnol. Bioeng. 12, 961–974 (1970).

    Article  Google Scholar 

  5. R. W. Stieber and P. Gerhardt,Biotechnol. Bioeng. 23, 535–549 (1981).

    Article  CAS  Google Scholar 

  6. L. D. Sortland and C. R. Wilke,Biotechnol. Bioeng. 11, 805–841 (1969).

    Article  CAS  Google Scholar 

  7. T. B. Vick Roy, D. K. Mandel, D. K. Dea, H. W. Blanch, and C. R. Wilke,Biotechnol. Lett. 5, 665–670 (1983).

    Article  Google Scholar 

  8. R. Luedeking and E. L. Piret,J. Biochem. Microb. Tech. Eng. 1, 431–459 (1959).

    Article  CAS  Google Scholar 

  9. J. H. Janssens, A. Bernard, and R. B. Bailey,Biotechnol. Bioeng. 25, 1–5 (1983).

    Article  Google Scholar 

  10. K. J. Lee, M. Lefebre, D. E. Tribe, and P. L. Rogers,Biotechnol. Lett. 2, 487–492 (1980).

    Article  CAS  Google Scholar 

  11. J. R. Postgate, J. R. Crumpton, and J. R. Hunter,J. Gen. Microbiol. 24, 15–24 (1961).

    CAS  Google Scholar 

  12. M. M. Bradford,Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  13. E. A. Dawes and D. W. Ribbons,Bacteriol. Rev. 28, 126–149 (1964).

    CAS  Google Scholar 

  14. H. Stouthamer and C. Bettenhausen,Biochem. Biophys. Acta 301, 53–70 (1973).

    CAS  Google Scholar 

  15. A. G. Marr, E. H. Nilson, and D. J. Clark,Ann. NY Acad. Sci. 102, 536–548 (1963).

    Article  CAS  Google Scholar 

  16. P. G. Rogers and P. B. Stewart,Arch. Microbiol. 99, 25–46 (1974).

    Article  Google Scholar 

  17. P. J. Reilly, PhD Thesis, 1964, University of Pennsylvania.

  18. A. V. Quirk and J. R. Woodrow,Biotechnol. Lett. 5, 277–282 (1983).

    Article  CAS  Google Scholar 

  19. J. P. Belaich, A. Belaich, and P. Simonpietri,J. Gen. Microbiol. 70, 179–185 (1972).

    CAS  Google Scholar 

  20. O. M. Neijssel and D. W. Tempest,Arch. Microbiol. 110, 305–311 (1976).

    Article  CAS  Google Scholar 

  21. W. Beyeler, P. L. Rogers, and A. Fiechter,Appl. Microbiol. Technol. 19, 277–280 (1984).

    CAS  Google Scholar 

  22. T. B. Vick Roy, PhD Thesis, 1983, University of California, Berkeley.

    Google Scholar 

  23. L. A. Rogers and E. O. Whittier,J. Bacteriol. 16, 211–219 (1928).

    CAS  Google Scholar 

  24. G. Vinegra-Gonzales and J. Gomez, inFuels and Organic Chemicals from Biomass, 1983, D. Wise, Ed., CRC Press, Boca Raton, FL.

    Google Scholar 

  25. M. R. Friedmann, PhD Thesis, 1967, Columbia University.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohleyer, E., Blanch, H.W. & Wilke, C.R. Continuous production of lactic acid in a cell recycle reactor. Appl Biochem Biotechnol 11, 317–332 (1985). https://doi.org/10.1007/BF02798444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02798444

Index Entries

Navigation