Skip to main content
Log in

Enzyme-catalyzed synthesis of nucleoside triphosphates from nucleoside monophosphates

ATP from AMP and Ribavirin 5′-triphosphate from Ribavirin 5′-monophosphate

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Syntheses of adenosine 5′-triphosphate (ATP) from adenosine 5′-monophosphate (AMP) and ribavirin 5′-triphosphate (RTP) from ribavirin 5′-monophosphate (RMP) (1) were performed using enzymes as catalysts. Synthesis of ATP is based on acetyl phosphate as the phosphate donor, and acetate kinase (Bacillus stearothermophilus, EC 2.7.2.1), adenylate kinase (porcine muscle, EC 2.7.4.3), and inorganic pyrophosphatase (yeast, EC 2.6.1.1) as the catalysts. Three reactions on a 150-mmol scale provided ATP as its barium salt in 82% yield and 67% purity. Synthesis of RTP used phosphoenol pyruvate (PEP) as the phosphate donor, and pyruvate kinase (rabbit muscle, EC 2.7.1.40) and adenylate kinase (rabbit muscle) as the catalysts. A gram-scale reaction provided RTP as its barium salt in 93% yield and 97% purity. This work demonstrates the utility of the autoxidationresistant acetate kinase fromB. stearothermophilus, the value of pyrophosphatase in controlling the level of pyrophosphate in the reactions and the ability of adenylate kinase to accept at least one substrate other than a derivative of adenosine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. This research was supported by the National Institutes of Health, Grant GM 30367.

  2. Whitesides, G. M. and Wong, C.-H. (1985),Angew. Chem. Int. Ed. Eng. 24, 617.

    Article  Google Scholar 

  3. Jones, J. B. (1986),Tetrahedron 42, 3351.

    Article  CAS  Google Scholar 

  4. Crans, D. C, Kazlauskas, R. J., Hirschbein, B. L., Wong, C. H., Abril, O., and Whitesides, G. M.Methods Enzymol, in press.

  5. Crans, D. C. and Whitesides, G. M. (1985),J. Am. Chem. Soc. 107, 7008;ibid., 7019.

    Article  Google Scholar 

  6. Wong, C.-H., Haynie, S. L., and Whitesides, G. M. (1983),J. Am. Chem. Soc. 105, 115.

    Article  CAS  Google Scholar 

  7. Hirschbein, B. L., Mazenod, F. P., and Whitesides, G. M. (1982),J. Org. Chem. 47, 3765.

    Article  CAS  Google Scholar 

  8. Wong, C.-H., McCurry, S. D., and Whitesides, G. M. (1980),J. Am. Chem. Soc. 102, 7938.

    Article  CAS  Google Scholar 

  9. Ladner, W. F. and Whitesides, G. M. (1985),J. Org. Chem. 50, 1076.

    Article  CAS  Google Scholar 

  10. Dixit, V. M. and Poulter, C. D. (1984),Tetrahedron Lett. 25, 4055.

    Article  CAS  Google Scholar 

  11. Scheit, K. H. (1980),Nucleotide Analogs; Wiley, New York, chapter 6.

    Google Scholar 

  12. Tani, Y., Yonehara, T., Mitani, Y., and Yamada, H. (1984),J. Biotechnol. 1, 119; Tani, Y., Mitani, Y., and Yamada, H. (1984),J. Ferment. Technol. 62, 99.

    Article  CAS  Google Scholar 

  13. Tani, Y., Mitani, Y., and Yamada, H. (1984),Agric. Biol. Chem. 48, 431.

    CAS  Google Scholar 

  14. Asada, M., Morimoto, K., Nakanishi, K., Matsuno, R., Tanaka, A., Kimura, A., and Kamikubo, T. (1979),Agric. Biol. Chem. 43, 1773.

    CAS  Google Scholar 

  15. Asada, M., Nakanishi, K., Matsuno, R., Kariya, Y., Kimura, A., Kamikubo, T. (1978),Agri. Biol. Chem. 42, 1533.

    CAS  Google Scholar 

  16. Nakajima, H., Nagata, K., Kondo, H., Imahori, K. (1984),J. Appl. Biochem. 6, 19; Kondo, H., Tomioka, I., Nakajima, H., and Imahori, K.ibid., 29.

    CAS  Google Scholar 

  17. Leuchs, H.-J., Lewis, J. M., Rios-Mercadillo, V. M., and Whitesides, G. M. (1979),J. Am. Chem. Soc. 101, 5829.

    Article  CAS  Google Scholar 

  18. Baughn, R. L., Actalsteinsson, O., and Whitesides, G. M. (1978),J. Am. Chem. Soc. 100, 304.

    Article  CAS  Google Scholar 

  19. Rose, I. A. (1962), inThe Enzymes, 2nd ed., Boyer, P. D., Lardy, H., and Myrback, K., eds., Academic, New York, vol. 6, chapter 7.

    Google Scholar 

  20. Lewis, J. M., Haynie, S. L., and Whitesides, G. M. (1979),J. Org. Chem. 44, 864; Whitesides, G. M., Siegel, M., and Garett, P. (1975),J. Org. Chem. 40, 2516.

    Article  CAS  Google Scholar 

  21. Kazlauska, R. J. and Whitesides, G. M. (1985),J. Org. Chem. 50, 1069.

    Article  Google Scholar 

  22. Crans, D. C. and Whitesides, G. M. (1983),J. Org. Chem. 26, 3130.

    Article  Google Scholar 

  23. Nakajima, H., Suzuki, K., and Imahari, K. (1978),J. Biochem. 84, 193;Methods Enzymol. 90, 179.

    CAS  Google Scholar 

  24. Noda, L. InThe Enzymes, 3rd ed.; Boyer, P. D., ed., Academic, New York, 1973; vol. 8, part A, chapter 8.

    Google Scholar 

  25. Sidwell, R. W., Huffman, J. H., Robins, R. K., Khare, G. P., Allen, L. B., Witkowski, J. T., and Ronins, R. K. (1972),Science 177, 705.

    Article  CAS  Google Scholar 

  26. Witkowski, J. T., Robins, R. K., Sidwell, R. W., and Simon, L. N. (1972),J. Med. Chem. 15, 1150.

    Article  CAS  Google Scholar 

  27. Witkowski, J. T., Robins, R. K., Khare, G. P., and Sidwell, R. W. (1973),J. Med. Chem. 16, 935.

    Article  CAS  Google Scholar 

  28. Allen, L. B., Boswell, K. H., Khwaja, T. A., Meyer, R. B., Jr., Sidwell, R. W., and Witkowski, J. T. (1978),J. Med. Chem. 21, 742.

    Article  Google Scholar 

  29. Pollak, A., Blumenfeld, H., Wax, M., Baughn, R. L., and Whitesides, G. M. (1980),J. Am. Chem. Soc. 102, 6324; Pollak, A., Baughn, R. L., Adalsteinsson, O., and Whitesides, G. M. (1978),J. Am. Chem. Soc. 100, 302.

    Article  CAS  Google Scholar 

  30. Methods of Enzymatic Analysis, 3rd ed., Bergmeyer, H. S., Bergmeyer, J., Grassl, M., eds., Verlag Chemie. Weinheim, 1983; vol. 2, pp. 333–345;ibid.; vol. 7, pp. 346–357 and 365–370.

    Google Scholar 

  31. Bailey, K. and Webb, E. C. (1944),Biochem. J. 38, 394.

    CAS  Google Scholar 

  32. The low purity of ATP reflects the use of an excess of AcP (3 equiv per equiv of nucleotides) and 90% conversion of AMP to ATP. The major impurities were inorganic phosphate, ADP, and AMP.

  33. Bauer, P. I. and Varady, G. (1978),Anal. Biochem. 91, 613.

    Article  CAS  Google Scholar 

  34. Adenylate kinase also accepts CMP as a substrate, howbeit with low vmax. This activity provides the basis for a synthesis of CTP: Simon, E. S., Bednarski, M. D., and Whitesides, G. M. (1988),Tetrahedron Lett. 29, 1123; Simon, E. S., Bednarski, M. D. and Whitesides, G. M.,J. Am. Chem. Soc., in press.

    Article  CAS  Google Scholar 

  35. Bednarski, M. D., Chenault, H. K., Simon, E. S., and Whitesides, G. M. (1987),J. Am. Chem. Soc. 109, 1283.

    Article  CAS  Google Scholar 

  36. Josse, J. (1966),J. Biol. Chem. 241, 1938.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, MJ., Whitesides, G.M. Enzyme-catalyzed synthesis of nucleoside triphosphates from nucleoside monophosphates. Appl Biochem Biotechnol 16, 95–108 (1987). https://doi.org/10.1007/BF02798359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02798359

Index entries

Navigation