Skip to main content
Log in

Applications of neutron activation analysis to the study of age-related neurological diseases

  • Applications of Trace Metal Analysis to Basic Problems in Neurobiology
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although the etiology and pathogenesis of Alzheimer’s disease, Pick’s disease, and amyotrophic lateral sclerosis are still unknown, it has been suggested that perturbations in element metabolism may play a role. Even if not causative factors, these imbalances may prove to be markers that could aid in diagnosis. We have employed a sequential neutron activation analysis (NAA) procedure to determine elemental concentrations in brain, hair, fingernails, blood, and cerebrospinal fluid (CSF) of these patients and age-matched controls. Samples are first irradiated with accelerator-produced 14-MeV neutrons for determination of nitrogen and phosphorus, then with reactor thermal neutrons for the instrumental determination of 16–18 minor and trace elements, and, finally, reactor-irradiated again, followed by a rapid radiochemical separation procedure (RNAA) to determine four additional elements. Major advantages of NAA are: (1) its simultaneous multielement capability; (2) the relative freedom from reagent and laboratory contamination; (3) the absence of major matrix effects; and (4) an adequate sensitivity for most elements of interest. Ranges of concentrations by INAA and RNAA in selected control tissues and interelement correlations in control brain are presented to illustrate results obtained by the procedure. Longitudinal studies of tissues from Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS) patients are still in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Crapper, S. S. Krishnan, and A. J. Dalton,Science 180, 511 (1973).

    Article  PubMed  CAS  Google Scholar 

  2. D. R. Crapper, S. S. Krishnan, and S. Quittkat,Brain 99, 67 (1976).

    Article  PubMed  CAS  Google Scholar 

  3. G. A. Trapp, G. D. Miner, R. L. Zimmerman, A. R. Mastri, and L. L. Heston,Biol. Psychiat. 13, 709 (1978).

    PubMed  CAS  Google Scholar 

  4. D. P. Perl and A. R. Brody,Science 208, 297 (1978).

    Article  Google Scholar 

  5. K. Hess and P. W. Straub,Praxis 63, 177 (1974).

    PubMed  CAS  Google Scholar 

  6. W. J. Niklowitz and T. I. Mandybur,J. Neuropathol. Exp. Neurol. 34, 445 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. G. R. Banta and W. R. Markesbery,Neurology 27, 213 (1977).

    PubMed  CAS  Google Scholar 

  8. T. Nikaido, J. Austin, and L. Trueb,Arch. Neurol. 27, 549 (1972).

    PubMed  CAS  Google Scholar 

  9. L. A. Hershey, C. O. Hershey, and A. W. Varnes,Neurology 34, 1197 (1984).

    PubMed  CAS  Google Scholar 

  10. F. M. Burnet,Lancet 1, 186 (1981).

    Article  PubMed  CAS  Google Scholar 

  11. J. R. McDermott, A. I. Smith, K. Iqbal, and H. M. Wisniewski,Neurology 29, 809 (1979).

    PubMed  CAS  Google Scholar 

  12. W. R. Markesbery, W. D. Ehmann, T. I. M. Hossian, M. Alauddin, and D. T. Goodin,Ann. Neurol. 10, 511 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. C. O. Hershey, L. A. Hershey, A. Varnes, S. D. Vibhakar, P. Lavin, and W. H. Strain,Neurology 33, 1350 (1983).

    PubMed  CAS  Google Scholar 

  14. D. Shore and R. J. Wyatt,J. Nerv. Ment. Dis. 171, 553 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. W. R. Markesbery, W. D. Ehmann, T. I. M. Hossain, and M. Alauddin,Neurotoxicology 5, 49 (1984).

    PubMed  CAS  Google Scholar 

  16. W. D. Ehmann, W. R. Markesbery, and M. Alauddin,Neurobiology of Zinc, C. J. Frederickson, G. A. Howell, and E. J. Kasarskis, eds., Alan Liss, New York, NY, 1984, pp. 329–342.

    Google Scholar 

  17. R. M. Garruto, R. Yangagihara, and D. C. Gajdusek,Neurology 35, 193 (1985).

    PubMed  CAS  Google Scholar 

  18. D. Shore, R. I. Henkin, N. R. Nelson, R. P. Agarwal, and R. J. Wyatt,J. Am. Geriatr. Soc. 32, 892 (1984).

    PubMed  CAS  Google Scholar 

  19. J. Constantinidis, J. Richard, and R. Tissot,Rev Neurol. 133, 685 (1977).

    PubMed  CAS  Google Scholar 

  20. J. Constantinidis and R. Tissot,Neural Aging and Its Implication in Human Neurological Pathology, R. D. Terry, C. L. Bolis, and G. Toffano, eds., Raven, New York, NY, 1983, pp. 53–59.

    Google Scholar 

  21. W. D. Ehmann, M. Alauddin, T. I. M. Hossain, and W. R. Markesbery,Ann. Neurol. 15, 102 (1984).

    Article  PubMed  CAS  Google Scholar 

  22. I. A. Brown,Arch. Neurol. Psychiat. 72, 674 (1954).

    CAS  Google Scholar 

  23. J. A. Boothby, P. V. deJusus, and L. P. Rowland,Arch. Neurol. 31, 18 (1974).

    PubMed  CAS  Google Scholar 

  24. T. E. Barber,J. Occup. Med. 20, 667 (1978).

    PubMed  CAS  Google Scholar 

  25. A. D. Kantarjian,Neurology 11, 639 (1961).

    PubMed  CAS  Google Scholar 

  26. A. M. G. Campbell, E. R. Williams, and D. Barltrop,J. Neurol. Neurosurg. Psychiat. 33, 877 (1970).

    PubMed  CAS  Google Scholar 

  27. M. T. Felmus, B. M. Patten, and L. Swanke,Neurology 26, 167 (1976).

    PubMed  CAS  Google Scholar 

  28. H. M. Kurlander and B. M. Patten,Ann. Neurol. 6, 21 (1979).

    Article  PubMed  CAS  Google Scholar 

  29. Y. Mizumoto, S. Iwata, K. Sasajima, Y. Yase, and S. Yoshida,Radioisotopes 29, 385 (1980).

    Google Scholar 

  30. S. Yoshida,Clin. Neurol. 17, 299 (1977).

    CAS  Google Scholar 

  31. S. Yoshida,Clin. Neurol. 19, 283 (1979).

    CAS  Google Scholar 

  32. S. Yoshida,Clin. Neurol. 19, 641 (1979).

    CAS  Google Scholar 

  33. W. D. Ehmann, W. R. Markesbery, T. I. M. Hossain, M. Alauddin, and G. T. Goodin,J. Radioanal. Chem. 70, 57 (1982).

    CAS  Google Scholar 

  34. W. R. Markesbery, W. D. Ehmann, M. Alauddin, and T. I. M. Hossain,Neurobiol. Aging 5, 19 (1984).

    Article  PubMed  CAS  Google Scholar 

  35. Y. Ryabukhin,J. Radioanal. Chem. 60, 7 (1980).

    Article  CAS  Google Scholar 

  36. R. S. Rivlin,Am. J. Medicine 75, 489 (1983).

    Article  CAS  Google Scholar 

  37. W-Z. Tian and W. D. Ehmann,J. Radioanal. Nucl. Chem. 89, 109 (1985).

    Article  CAS  Google Scholar 

  38. W. D. Ehmann, T. I. M. Hossain, D. T. Goodin, and W. R. Markesbery,Aluminum Analysis in Biological Materials, M. R. Wills and J. Savory, Eds., University of Virginia Press, Charlottesville, VA, 1983. pp. 23–33.

    Google Scholar 

  39. R. Cornelis, J. Hoste, and J. Versieck,Talanta 29, 1029 (1982).

    Article  CAS  PubMed  Google Scholar 

  40. Takeuchi, T. Hayachi, J. Takada, Y. Hayashi, M. Koyama, H. Kozuka, H. Tsuji, Y. Kusada, S. Ohmori, M. Shinugi, A. Aoki, K. Katayama, and T. Tomiyama,J. Radioanal. Chem. 70, 29 (1982).

    CAS  Google Scholar 

  41. G. Heul, R. B. Everson, and I. Menger,Environ. Res. 35, 115 (1984).

    Article  Google Scholar 

  42. K. M. Hambidge and W. Droegemueller,Obstet. Gynecl. 44, 666 (1974).

    CAS  Google Scholar 

  43. S. P. Moo and K. K. S. Pillay,J. Radioanal. Chem. 77, 141 (1983).

    Article  CAS  Google Scholar 

  44. A. Hock, U. Demmel, H. Schicha, K. Kasperek, and L. E. Feinendegen,Brain 98, 49 (1975).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehmann, W.D., Markesbery, W.R., Kasarskis, E.J. et al. Applications of neutron activation analysis to the study of age-related neurological diseases. Biol Trace Elem Res 13, 19–33 (1987). https://doi.org/10.1007/BF02796618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796618

Index Entries

Navigation