Skip to main content
Log in

Laminin provides a better substrate than fibronectin for attachment, growth, and differentiation of 1003 embryonal carcinoma cells

  • Symposium
  • Published:
In Vitro - Plant Aims and scope Submit manuscript

Summary

Culture of cells in hormonally defined media has allowed (a) the demonstration of physiological responses from cells usually unable to express them in vitro and (b) the study of the effects on growth and differentiation of diffusible factors and attachment factors. The embryonal carcinoma line 1003 forms multidifferentiated tumors in vivo but is unable to differentiate in vitro when grown in serum-containing medium. In a defined medium containing insulin, transferrin, selenium, and fibronectin as attachment factors, 1003 cells grow for several generations and differentiate into neurons and embryonic mesenchyme (Darmon et al., 1981, Dev. Biol. 85: 463–473). In the present work the effects of fibronectin and laminin were compared. In the presence of laminin the cells attached and spread better, grew faster, and could be plated at lower densities. Neurite extension was also better under these conditions and most importantly, it was found that laminin induced an important formation of muscular tissue when the cells had been seeded at low densities. Multinucleated myotubes could be stained with antibodies directed against embryonic muscular myosin. Coating the dishes with polylysine or adding FGF or serum-spreading factor to the medium allowed growth of low-density cultures with fibronectin instead of laminin but muscular differentiation was not detected under these conditions. Addition of fibronectin to laminin-containing medium did not inhibit muscular differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradshaw, R. A. Nerve growth factor. Ann. Rev. Biochem. 47: 191–216; 1978.

    Article  PubMed  CAS  Google Scholar 

  2. Lerner, A.; Moellman, G.; Varga, J.; Halaban, R.; Pawelek, J. Action of melanocyte-stimulating hormone on pigment cells. Cold Spring Harbor conferences on cell proliferation 6: 187–197; 1979.

    CAS  Google Scholar 

  3. Adamson, J.; Brown, J. Aspects of erythroid differentiation and proliferation. Papaconstinou, J.; Rutter, W. J. eds. Molecular control of proliferation and differentiation. New York: Academic Press; 1978: 161–179.

    Google Scholar 

  4. Metcalf, D. Clonal analysis of proliferation and differentiation of paired daughter cells: action of granulocyte-macrophage colony-stimulating factor on granulocyte-macrophage precursors. Proc. Natl. Acad. Sci. USA 77: 5327–5330; 1980.

    Article  PubMed  CAS  Google Scholar 

  5. Darmon, M.; Stallcup, W.; Pittman, R.; Sato, G. Control of differentiation pathways by the extracellular environment in an embryonal carcinoma cell line. Cold Spring Harbor conferences on cell proliferation 9: 997–1006; 1982.

    Google Scholar 

  6. Kleinman, H.; Klebe, R.; Martin, G. Role of collagenous matrices in the adhesion and growth of cells. J. Cell. Biol. 88: 473–484; 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Gospodarowicz, D.; Delgado, D.; Vlodavski, I. Permissive effect of the extracellular matrix on cell proliferation in vitro. Proc. Natl. Acad. Sci. USA 77: 4094–4098; 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Nathanson, M. A.; Hilfer, S. R.; Searls, R. L. Formation of cartilage by non-chondrogenic cell types. Dev. Biol. 64: 99–117; 1978.

    Article  PubMed  CAS  Google Scholar 

  9. Meier, S.; Hay, E. Control of corneal differentiation by extracellular materials. Collagen as a promoter and stabilizer of epithelial stroma production. Dev. Biol. 38: 249–270; 1974.

    Article  PubMed  CAS  Google Scholar 

  10. Hauschka, S.; Konigsberg, I. The influence of collagen on the development of muscle colonies. Proc. Natl. Acad. Sci. USA 55: 119–126; 1966.

    Article  PubMed  CAS  Google Scholar 

  11. Darmon, M.; Bottenstein, J.; Sato, G. Neural differentiation following culture of embryonal carcinoma cells in a serum-free defined medium. Dev. Biol. 85: 463–473; 1981.

    Article  PubMed  CAS  Google Scholar 

  12. Darmon, M.; Stallcup, W.; Pittman, A. Induction of neural differentiation by serum-deprivation in cultures of the embryonal carcinoma cell line 1003. Exp. Cell. Res. 138: 73–78; 1982.

    Article  PubMed  CAS  Google Scholar 

  13. Engvall, E.; Ruoslahti, E. Binding of soluble form of fibroblast surface protein, fibronectin, to collagen. Int. J. Cancer 20: 1–5; 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Barnes, D.; Darmon, M.; Orly, J. Serum spreading factor: effects on RFI ovary cells and 1003 mouse embryonal carcinoma cells in serum-free media. Cold Spring Harbor conferences on cell proliferation. In press.

  15. Bonissol, C.; Gilbert, M.; Ivanova, L. Problems in detection of mycoplasma contamination in cell culture. Ann. Microbiol. Inst. Pasteur 129B: 245–265; 1978.

    CAS  Google Scholar 

  16. Orly, J.; Sato, G.; Erickson, G. Serum suppresses the expression of hormonally induced functions in granulosa cells. Cell 20: 817–827; 1980.

    Article  PubMed  CAS  Google Scholar 

  17. Barnes, D.; Sato, G. Serum-free cell culture: a unifying approach. Cell 22: 649–655; 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Murakami, H.; Masui, H. Hormonal control of human colon carcinoma cell growth in serum-free medium. Proc. Natl. Acad. Sci. USA 77: 3464–3468; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Seeds, N.; Gilman, A.; Amano, T.; Nirenberg, M. Regulation of axon formation by clonal lines of a neural tumor. Proc. Natl. Acad. Sci. USA 66: 160–167; 1970.

    Article  PubMed  CAS  Google Scholar 

  20. Jakob, H.; Buckingham, M. E.; Cohen, A.; Dupont, L.; Fiszman, M.; Jacob, F. A skeletal muscle cell line isolated from a mouse teratocarcinoma undergoes apparently normal terminal differentiationin vitro. Exp. Cell Res. 114: 403–408; 1978.

    Article  PubMed  CAS  Google Scholar 

  21. Darmon, M.; Serrero, G.; Rizzino, A.; Sato, G. Isolation of myoblastic fibro-adipogenic and fibroblastic clonal cell lines from a common precursor and study of their hormonal requirements for growth and differentiation. Exp. Cell Res. 132: 313–327; 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Constantinides, P. G.; Jones, P. A.; Gevers, W. Functional striated muscle cells from nonmyoblast precursors following 5-azacytidine treatment. Nature 267:364–366; 1977.

    Article  PubMed  CAS  Google Scholar 

  23. Constantinides, P.; Taylor, S.; Jones, P. Phenotypic conversion of cultured mouse embryo cells by azapyrymidine nucleosides. Dev. Biol. 66: 57–71; 1978.

    Article  PubMed  CAS  Google Scholar 

  24. Taylor, S.; Jones, P. Multiple new phenotypes induced in 10 T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17: 771–779; 1979.

    Article  PubMed  CAS  Google Scholar 

  25. Darmon, M.; Serrero, G. Isolation of two different fibroblastic cell types from the embryonal carcinoma cell line 1003. Study of tumorigenic properties, surface antigens, and differentiation responses to 5-azacytidine and dexamethasone. Cold Spring Harbor conferences on cell proliferation. In press.

  26. Foidart, J.; Bere, E.; Yaar, M.; Rennard, S.; Gullino, M.; Martin, G.; Katz, S. Distribution and immunoelectron microscopic localization of laminin, a non-collagenous basement membrane glycoprotein. Lab. Invest. 42: 336–342; 1980.

    PubMed  CAS  Google Scholar 

  27. Leivo, I.; Vaheri, A.; Timpl, R.; Wartiovaara, J. Appearance and distribution of collagenes and laminin in the early mouse embryo. Dev. Biol. 76: 100–114; 1980.

    Article  PubMed  CAS  Google Scholar 

  28. Reddi, A.; Anderson, W. Collagenous bone matrix-induced endochondral ossification and hematopoiesis. J. Cell Biol. 69: 557–572; 1976.

    Article  PubMed  CAS  Google Scholar 

  29. Gospodarowicz, D.; Ill, C. Do plasma and serum have different abilities to promote cell growth? Proc. Natl. Acad. Sci. USA 77: 2726–2730; 1980.

    Article  PubMed  CAS  Google Scholar 

  30. Ruch, J.; Lesot, H.; Karcher-Djuricic, V.; Meyer, J.; Olive, M. Facts and hypotheses concerning the control of odontoblast differentiation. Differentiation 21: 7–12; 1982.

    Article  PubMed  CAS  Google Scholar 

  31. Maden, M. Vitamin A and pattern formation in the regenerating limb. Nature 295: 672–675; 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Wartiovaara, J.; Leivo, I.; Vaheri, A. Expression of cell surface-associated glycoproteins, fibronectin, in the early mouse embryo. Dev. Biol. 69: 247–257; 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Smith, J.; Singh, J.; Lillquist, J.; Goon, D.; Stiles, C. Growth factors adherent to cell substrate are mitogenically activein situ. Nature 296: 154–156; 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented in the symposium on Plant and Animal Physiology in Vitro at the 33rd Annual Meeting of the Tissue Culture Association, San Diego, California, June 6–10, 1982.

This research was supported in part by grants from the “Centre National de la Recherche Scientifique” (LA 269), the “Délégation Générale à la Recherche Scientifique et Technique,” the Fondation pour la Recherche Médicale Française,” the “Institut National de la Santé et de la Recherche Medicale,” the “Ligue Nationale Française centre le Cancer,” and the “Fondation André Meyer.”

This symposium was supported in part by the following organizations: Bellco Glass, Inc., California Branch of the Tissue Culture Association, Collaborative Research, Hana Media, Hybridtech, K C Biological, Inc., and Millipore Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darmon, M.Y. Laminin provides a better substrate than fibronectin for attachment, growth, and differentiation of 1003 embryonal carcinoma cells. In Vitro Cell.Dev.Biol.-Plant 18, 997–1003 (1982). https://doi.org/10.1007/BF02796374

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796374

Key words

Navigation