Skip to main content
Log in

Increased saturated phospholipid in cultured cells grown with linoleic acid

In Vitro Aims and scope Submit manuscript

Summary

We found that fetal bovine serum supplementation of culture medium provided limited quantities of linoleic acid, an essential fatty acid, to cells grown in culture (2.8 ± 0.3% of total fatty acids in 12 lots). Supplementation of the medium with additional linoleic acid resulted in altered phospholipid acyl composition in cells of two established lines, A549, a putative model of the pulmonary Type II epithelial cell, and SIRC, a line derived from rabbit corneal epithelium. In particular, linoleic acid supplementation induced a relative increase in disaturated choline phosphoglycerides of 33 and 36%, respectively, in cells of the two lines. This observation may be relevant to design of media for primary culture of Type II cells, in which disaturated phospholipid synthesis is used as an index of differentiated function (surfactant production). Linoleate supplementation did not alter growth or size (protein content) of cells of either line and caused a slight increase in accumulation of neutral lipid, in the form of cytoplasmic droplets, in A549 cells. Supplementation of cell cultures with equivalent concentrations of the nonessential fatty acids palmitic and oleic acid did not significantly alter the growth, morphologic appearance, or lipid composition of the cells. However, it was demonstrated in cells of one line that palmitic acid supplementation temporarily stimulated synthesis of disaturated choline phosphoglyceride from radiolabeled choline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Diglio, C. A.; Kikkawa, Y. The type II epithelial cells of the lung. IV. Adaptation and behavior of isolated type II cells in culture. Lab. Invest. 37: 622–631; 1977.

    PubMed  CAS  Google Scholar 

  2. Smith, F. B.; Kikkawa, Y.; Diglio, C. A.; Dalen, R. C. The type II epithelial cells of the lung. IV. Incorporation of3H-choline and3H-palmitate into lipids of cultured type II cells. Lab. Invest. 42: 296–301; 1980.

    PubMed  CAS  Google Scholar 

  3. Gould, K. G., Jr. Dispersal of lung into individual viable cells. Lenfant, C. ed. Lung biology in health and disease. New York: Marcel Dekker; 1976: 49–72.

    Google Scholar 

  4. Kikkawa, Y.; Yoneda, K. The type II epithelial cell of the lung. I. Method of isolation. Lab. Invest. 30: 76–84; 1974.

    PubMed  CAS  Google Scholar 

  5. Kikkawa, Y.; Yoneda, K.; Smith, F.; Packard, B.; Suzuki, K. The type II epithelial cells of the lung. II. Chemical composition and phospholipid synthesis. Lab. Invest. 32: 295–302; 1975.

    PubMed  CAS  Google Scholar 

  6. Mason, R. J.; Williams, M. C.; Greenleaf, R. D.; Clements, J. A. Isolation and properties of type II alveolar cells from rat lung. Am. Rev. Respir. Dis. 115: 1015–1026; 1977.

    PubMed  CAS  Google Scholar 

  7. Smith, B. T. Cell line A549: A model system for the study of alveolar type II cell function. Am. Rev. Respir. Dis. 115: 285–293; 1977.

    PubMed  CAS  Google Scholar 

  8. Mason, R. J.; Williams, M. C. Phospholipid composition and ultrastructure of A549 cells and other cultured pulmonary epithelial cells of presumed type II cell origin. Biochim. Biophys. Acta 617: 36–50; 1980.

    PubMed  CAS  Google Scholar 

  9. Schneeberger, E. E.; Lynch, R. D.; Geyer, R. P. Formation and disappearance of triglyceride droplets in strain L fibroblasts. Exp. Cell. Res. 69: 193–206; 1971.

    Article  PubMed  CAS  Google Scholar 

  10. Spector, A. A. Fatty acid, glyceride, and phospholipid metabolism. Rothblat, G. H.; Cristofalo, V. J. eds. Growth, nutrition, and metabolism of cells in culture. Vol. 1. New York: Academic Press; 1972: 257–296.

    Google Scholar 

  11. Miller, J. S.; Garnio, V. C.; Ackerman, G. A.; Sharma, H. M.; Milo, G. E.; Geer, J. C.; Cornwall, D. G. Triglycerides, lipid droplets and lysosomes in aorta smooth muscle cells during control of cell proliferation with polyunsaturated fatty acids and vitamin E. Lab. Invest. 42: 495–506; 1980.

    PubMed  CAS  Google Scholar 

  12. Holley, R. W.; Baldwin, J. H.; Kiernan, J. A. Control of growth of a tumor cell by linoleic acid. Proc. Natl. Acad. Sci. USA 71: 3976–3978; 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Horwitz, A. F.; Hatten, M. E.; Binger, M. M. Membrane fatty acid replacements and their effect on growth and lectin-induced agglutinibility. Proc. Natl. Acad. Sci. USA 71: 3115–3119; 1974.

    Article  PubMed  CAS  Google Scholar 

  14. Huttner, J. J. Fatty acids and their derivatives: inhibitors of proliferation in aortic smooth muscle cells. Science 197: 289–291; 1977.

    Article  PubMed  CAS  Google Scholar 

  15. Limanek, J. S.; Chin, J.; Chang, T. Y. Mammalian cell mutant requiring cholesterol and unsaturated fatty acid for growth. Proc. Natl. Acad. Sci. USA 75: 5452–5456; 1978.

    Article  PubMed  CAS  Google Scholar 

  16. Spector, A. A.; Kiser, R. E.; Denning, G. M.; Koh, S. M.; DeBault, L. E. Modification of the fatty acid composition of cultured human fibroblasts. J. Lipid Res. 20: 536–547; 1979.

    PubMed  CAS  Google Scholar 

  17. Wicha, M. S.; Liotta, L. A.; Kidwell, W. R. Effects of free fatty acids on the growth of normal and neoplastic rat mammary epithelial cells. Cancer Res. 39: 426–435; 1979.

    PubMed  CAS  Google Scholar 

  18. Lynch, R. D. Utilization of polyunsaturated fatty acids by human diploid cells ageing in vitro. Lipids 15: 412–420; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Gerschenson, L. E.; Mead, J. F.; Harary, I.; Haggerty, D. F. Studies on the effects of essential fatty acids on growth rate, fatty acid composition, oxidative phosphorylation and respiratory control of HeLa cells in culture. Biochim. Biophys. Acta 131: 42–49; 1967.

    Article  CAS  Google Scholar 

  20. Wood, R.; Falch, J. Lipids of cultured hepatoma cells. II. Effect of media lipids on cellular phospholipids. Lipids 8: 702–710; 1973.

    Article  PubMed  CAS  Google Scholar 

  21. MacKenzie, C. G.; Moritz, E.; Wisneski, J. A.; Reiss, O. K.; Moe, K. J. B. Fatty acid ester turnover: a control factor in triglyceride and lipid rich particle accumulation in cultured mammalian cells. Mol. Cell. Biochem. 19: 7–15; 1978.

    Article  PubMed  CAS  Google Scholar 

  22. Lieber, M.; Smith, B.; Szakal, A.; Nelson-Rees, W.; Todaro, G. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 17: 62–70; 1976.

    Article  PubMed  CAS  Google Scholar 

  23. Leehoy, J. Cytopathic effect ofRubella virus in a rabbit-cornea cell line. Science 149: 633–634; 1965.

    Article  Google Scholar 

  24. Smith, F. B.; Kikkawa, Y. The type II epithelial cells of the lung. III. Lecithin synthesis: a comparison with pulmonary macrophages. Lab. Invest. 38: 45–51; 1978.

    PubMed  CAS  Google Scholar 

  25. Lowry, O. H.; Rosenbrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275; 1951.

    PubMed  CAS  Google Scholar 

  26. Bligh, E. G.; Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917; 1959.

    PubMed  CAS  Google Scholar 

  27. Mason, R. J.; Huber, G.; Vaughan, M. Synthesis of dipalmitoyl lecithin by alveolar macrophages. J. Clin. Invest. 51: 68–73; 1972.

    PubMed  CAS  Google Scholar 

  28. Mangold, H. K. Thin layer chromatography of lipids. J. Am. Oil Chem. Soc. 38: 708–727; 1961.

    Article  CAS  Google Scholar 

  29. Rouser, G.; Siakotos, A. N.; Fleisher, S. Quantitative analysis of phospholipids and phosphorus analysis of spots. Lipids 1: 85–86; 1966.

    Article  PubMed  CAS  Google Scholar 

  30. Ways, P.; Reed, C. F.; Hanahan, D. J. Red cell and plasma lipids in acanthocytosis. J. Clin. Invest. 42: 1248–1260; 1963.

    Article  PubMed  CAS  Google Scholar 

  31. Lindgren, F. T.; Nichols, A. V. Fatty acid composition of the serum lipoproteins. Ann. N.Y. Acad. Sci. 94: 55–70; 1961.

    Article  PubMed  CAS  Google Scholar 

  32. Springer, E. L. Comparative study of the cytoplasmic organelles of epithelial cell lines derived from human carcinomas and malignant tissues. Cancer Res. 40: 803–817; 1980.

    PubMed  CAS  Google Scholar 

  33. Wilson, J. W.; Leduc, E. H. Mitochondrial changes in the liver of essential fatty acid deficient mice. J. Cell Biol. 16:281–296; 1963.

    Article  PubMed  CAS  Google Scholar 

  34. Gordon, G. B. Saturated free fatty acid toxicity. II. Lipid accumulation, ultrastructural alternations and toxicity in mammalian cells in culture. Exp. Mol. Pathol. 27: 262–276; 1977.

    Article  PubMed  CAS  Google Scholar 

  35. Holman, R. T. Essential fatty acids in human nutrition. Adv. Exp. Med. Biol. 83: 515–534; 1977.

    PubMed  CAS  Google Scholar 

  36. Mathers, L. Enzyme deletions and essential fatty acid metabolism in cultured cells. J. Biol. Chem. 250: 1152–1153; 1975.

    PubMed  CAS  Google Scholar 

  37. Van Golde, L. M. G. Metabolism of phospholipids in the lung. Am. Rev. Resp. Dis. 114: 977–1000; 1976.

    PubMed  Google Scholar 

  38. Thompson, G. A., Jr. The regulation of membrane lipid metabolism. Boca Raton: CRC Press, Inc.; 1980.

    Google Scholar 

  39. Gordon, G. B. Lipid accumulation in the stationary phase of strain L cells in suspension culture. Lab. Invest. 36: 114–121; 1977.

    PubMed  CAS  Google Scholar 

  40. Gordon, G. B.; Barcza, M. A.; Bush, M. E. Lipid accumulation in hypoxic tissue culture cells. Am. J. Pathol. 88: 663–674; 1977.

    PubMed  CAS  Google Scholar 

  41. Kyriakides, E. C.; Beeler, D. A.; Edmonds, R. H.; Balint, J. A. Alterations in phosphatidyl choline species and their reversal in pulmonary surfactant during essential fatty acid deficiency. Biochim. Biophys. Acta 431: 399–407; 1976.

    PubMed  CAS  Google Scholar 

  42. Burnell, J. M.; Kyriakides, E. C.; Edmonds, R. H.; Balint, J. A. The relationship of fatty acid composition and surface activity of lung extracts. Respir. Physiol. 32: 195–206; 1978.

    Article  PubMed  CAS  Google Scholar 

  43. Puck, T. T.; Cieciura, S. J.; Robertson, A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J. Exp. Med. 108: 945–956; 1958.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grants HL-24817 and HL-21251 from the National Institutes of Health, USPHS, and by a grant from the Alexandrine and Alexander L. Sinsheimer Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, F.B., Kikkawa, Y., Diglio, C.A. et al. Increased saturated phospholipid in cultured cells grown with linoleic acid. In Vitro 18, 331–338 (1982). https://doi.org/10.1007/BF02796331

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02796331

Key words

Navigation