Nontrivial solutions for a class of non-divergence equations on polarizable carnot group

  • Liu Haifeng
  • Niu Pencheng


Some new properties of polarizable Carnot group are given. By choosing a proper constant a nontrivial solution of a class of non-divergence Dirichlet problem on the polarizable Carnot group is constructed. Thus the multi-solution property of corresponding non-homogeneous Dirichlet problem is proved and the best possible of L q norm in the famous Alexandrov-Bakelman-Pucci type estimate is discussed.

MR Subject Classification

35J65 35B45 35H20 


Dirichlet problem polarizable Carnot group Alexandrov-Bakelman-Pucci estimate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balogh Z M, Tyson J T. Polar coordinates in Carnot groups, Math Z, 2002, 241:697–730.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Danielli D, Garafalo N, Nhieu D M. Notions of convexity in Carnot groups, Comm Anal Geom 2003, 11(2):263–341.zbMATHMathSciNetGoogle Scholar
  3. 3.
    Lanconelli E. Nonlinear equations on Carnot groups and curvature problems for CR manifolds. Rend Mat Acc Lincoi, 2003, 14(9):227–238.zbMATHMathSciNetGoogle Scholar
  4. 4.
    Kaplan A. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans Amer Math Soc, 1980, 258(1):1–22.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups, Arkiv for Math, 1975, 13:161–207.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Folland G B. A fundamental solution for a subelliptic operator, Bull Amer Math Soc, 1973, 39:373–376.MathSciNetGoogle Scholar

Copyright information

© Editorial Committee of Applied Mathematics-A Journal of Chinese Universities 2006

Authors and Affiliations

  • Liu Haifeng
    • 1
  • Niu Pencheng
    • 1
  1. 1.Dept. of Appl. Math.Northwestern Polytechnical Univ.Xi'anChina

Personalised recommendations