Skip to main content
Log in

Martin boundary of unlimited covering surfaces

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

LetW be an open Riemann surface and\(\bar W\) ap-sheeted (1<p<∞) unlimited covering surface ofW. Denote by Δ1 (resp.,\(\bar \Delta _1 \)) the minimal Martin boundary ofW (resp.,\(\bar W\)). For ζ ∈ Δ, let\(\nu _{\bar W} \)ζ be the (cardinal) number of the set of pionts\(\bar \varsigma \in \bar \Delta _1 \) which lie over ζ and\(\mathcal{M}_\varsigma \) the class of open connected subsetsM ofW such thatM∪{ζ} is a minimal fine neighborhood of ζ. Our main result is the following:\(\nu _{\bar W} \left( \varsigma \right) = \max _{M \in \mathcal{M}_\varsigma n} n_{\bar W} (M)\), where\(n_{\bar W} (M)\) is the number of components of π-1 M and π is the projection of\(\bar W\) ontoW. Moreover, some applications of the above results are discussed whenW is the unit disc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Ahlfors and L. Sario,Riemann Surfaces, Princeton, 1960.

  2. H. Aikawa,Quasiadditivity of capacity and minimal thinness, Ann. Acad. Sci. Fenn. Ser. A I Math.18 (1993), 65–75.

    MATH  MathSciNet  Google Scholar 

  3. J. Bliedtner and W. Hansen,Potential Theory, Springer, Berlin, 1986.

    MATH  Google Scholar 

  4. M. Brelot,On topologies and boundaries in potential theory, Lecture Notes in Math.175, Springer, Berlin, 1971.

    MATH  Google Scholar 

  5. C. Constantinescu and A. Cornea,Ideale Ränder Riemannscher Flächen, Springer, Berlin, 1969.

    Google Scholar 

  6. J. Deny,Un théorème sur les ensembles effilés, Ann. Univ. de Grenoble, Sect. Sci. Math. Phys.23 (1948), 139–142.

    MathSciNet  Google Scholar 

  7. M. Essén,On minimal thinness, reduced functions and Green potentials, Proc. Edinburgh Math. Soc.36 (1992), 87–106.

    Article  Google Scholar 

  8. O. Forster,Lectures on Riemann Surfaces, GTM 81, Springer, New York, 1981

    MATH  Google Scholar 

  9. M. Heins,Riemann surfaces of infinite genus, Ann. of Math.55 (1952), 296–317.

    Article  MathSciNet  Google Scholar 

  10. L. Helms,Introduction to Potential Theory, Wiley-Interscience, New York, 1969.

    MATH  Google Scholar 

  11. J. Lelong-Ferrand,Etude au voisinage de la frontière des fonctions surharmoniques positives dans un demi-espace, Ann. Sci. École Norm. Sup.66 (1949), 125–159.

    MATH  MathSciNet  Google Scholar 

  12. H. Masaoka,Harmonic dimension of covering surfaces, II, Kodai Math. J.18 (1995), 487–493.

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Masaoka,Criterion of a Wiener type for minimal thinness on covering surfaces, Proc. Japan Acad. Ser. A72 (1996), 154–156.

    MATH  MathSciNet  Google Scholar 

  14. H. Masaoka and S. Segawa,Harmonic dimension of covering surfaces, Kodai Math. J.17 (1994), 351–359.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Masaoka and S. Segawa,Harmonic dimension of covering surfaces and minimal fine neighborhood, Osaka J. Math.34 (1997), 659–672.

    MATH  MathSciNet  Google Scholar 

  16. L. Naïm,Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier7 (1957), 183–281.

    MATH  Google Scholar 

  17. L. Sario and M. Nakai,Classification theory of Riemann Surfaces, Springer, Berlin, 1970.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Masaoka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masaoka, H., Segawa, S. Martin boundary of unlimited covering surfaces. J. Anal. Math. 82, 55–72 (2000). https://doi.org/10.1007/BF02791221

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02791221

Keywords

Navigation