Journal d'Analyse Mathématique

, Volume 48, Issue 1, pp 1–141 | Cite as

Entropy and isomorphism theorems for actions of amenable groups

  • Donald S. Ornstein
  • Benjamin Weiss


Amenable Group Bernoulli Shift Isomorphism Theorem Finitely Determine Spatial Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A-K]
    W. Ambrose and S. Kakutani,Structure and continuity of measurable flows, Duke Math. J.9 (1942), 25–42.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [B-G]
    M. Brin and M. Gromov,On the ergodicity of frame flows, Invent. Math.60 (1980), 1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [B-K]
    M. Brin and A. Katok,On local entropy in geometric dynamics (Rio de Janeiro 1981), Lecture Notes in Math.1007, Springer-Verlag, Berlin, 1982, pp. 30–38.Google Scholar
  4. [B-R]
    R. Burton and A. Rothstein,Lecture Notes in Ergodic Theory, unpublished.Google Scholar
  5. [C-F-W]
    A. Connes, J. Feldman and B. Weiss,An amenable equivalence relation is generated by a single transformation, Ergodic Theory and Dynamical Systems1 (1981), 431–450.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [C]
    J. P. Conze,Entropie d’ un groupe abelien de transformations, Z. Wahrscheinlichkeitstheor. Verw. Geb.25 (1972), 11–30.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [F]
    J. Feldman,Lectures on Orbit Equivalence, to appear.Google Scholar
  8. [F-1980]
    J. Feldman,r-entropy, equipartition, and Ornstein’s isomorphism theorem in R n, Isr. J. Math.36 (1980), 321–343.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Fi]
    A. Fieldsteel,The relative isomorphism theorem for Bernoulli flows, Isr. J. Math.40 (1981), 197–216.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [F-M-R]
    J. Feldman, C. Moore and D. Rudolph,Affine extensions of a Bernoulli shift, Trans. Am. Math. Soc.257 (1980), 171–191.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Fö]
    H. Föllmer,On entropy and information gain in random fields, Z. Wahrscheinlichkeitstheor. Verw. Geb.26 (1973), 207–217.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [FØ]
    E. FØlner,On groups with full Banach mean value, Math. Scand.3 (1955), 243–254.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [Fr]
    J. Fritz,Generalization of McMillan’s theorem to random set functions, Stud. Sci. Math. Hung.5 (1970), 369–394.MathSciNetzbMATHGoogle Scholar
  14. [Gr]
    R. I. Grigorchuk,The growth degrees of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR48 (1984), 939–985.Google Scholar
  15. [G]
    F. Greenleaf,Invariant Means on Topological Groups, Van Nostrand, New York, 1969.zbMATHGoogle Scholar
  16. [K-W]
    Y. Katznelson and B. Weiss,Commuting measure-preserving transformations, Isr. J. Math.12 (1972), 161–173.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Ki]
    J. C. Kieffer,A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space, Ann. Prob.3 (1975), 1031–1037.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Ki-2]
    J. C. Kieffer,Finite generators for an action of an Abelian group on a probability space, unpublished preprint.Google Scholar
  19. [L]
    D. Lind,Locally compact measure preserving flows. Adv. in Math.15 (1975), 175–193.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [M-vN]
    F. J. Murray and J. von Neumann,Rings of operators IV, Ann. Math.44 (1943), 716–804.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [O]
    D. Ornstein,Ergodic Theory, Randomness and Dynamical Systems, Yale Univ. Press, New Haven, 1974.zbMATHGoogle Scholar
  22. [O-W-1980]
    D. Ornstein and B. Weiss,Ergodic theory of amenable group actions I. The Rohlin lemma. Bull. Am. Math. Soc.2 (1980), 161–164.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [O-W-1983]
    D. Ornstein and B. Weiss,The Shannon-McMillan-Breiman theorem for a class of amenable groups, Isr. J. Math.44 (1983), 53–60.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [P]
    J.-P. Pier,Amenable Locally Compact Groups, John Wiley, New York, 1984.zbMATHGoogle Scholar
  25. [P-S]
    B. S. Pitskel and A. M. Stepin,On the property of uniform distribution of entropy of computative groups with metric automorphisms, Dokl. Akad. Nauk SSSR198 (1971), 1021–1024.MathSciNetGoogle Scholar
  26. [Ra]
    A. Ramsay,Measurable group actions are essentially Borel actions, Isr. J. Math.51 (1985), 339–346.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Ru-1978a]
    D. Rudolph,If a finite extension of a Bernoulli shift has no finite rotation factor it is Bernoulli, Isr. J. Math.30 (1978), 193–206.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Ru-1978b]
    D. Rudolph,Classifying the isometric extensions of a Bernoulli shift, J. Analyse Math.34 (1978), 36–59.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [Ru-1983]
    D. Rudolph,An isomorphism theory for Bernoulli free, Z-skew-compact group actions, Adv. in Math.47 (1983), 241–257.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [Ru-1985]
    D. Rudolph,Restricted orbit equivalence. Memoirs Am. Math. Soc. No. 323 (1985).Google Scholar
  31. [St]
    A. M. Stepin,On an entropy invariant of decreasing sequences of measurable partitions, Funct. Anal. Appl.5 (1971), 80–84.Google Scholar
  32. [T]
    A. J. Thomasian,An elementary proof of the AEP of information theory, Ann. Math. Stat.31 (1960), 452–456.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [Th]
    J.-P. Thouvenot,Convergence en moyenne de l’information pour l’action de Z α, Z. Wahrscheinlichkeitstheor. Verw. Geb.24 (1972), 135–137.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [V]
    V. S. Varadarajan,Groups of automorphisms of Borel spaces, Trans. Am. Math. Soc.109 (1963), 191–219.MathSciNetCrossRefzbMATHGoogle Scholar
  35. [Z]
    R. Zimmer,Ergodic Theory and Semisimple Groups, Birkhausen, Boston, 1984.CrossRefzbMATHGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1987

Authors and Affiliations

  • Donald S. Ornstein
    • 1
  • Benjamin Weiss
    • 2
  1. 1.Department of MathematicsStanford UniversityStanfordUSA
  2. 2.Institute of MathematicsThe Hebrew University of JersusalemJerusalemIsrael

Personalised recommendations