Skip to main content
Log in

On the Riesz transform associated with the ultraspherical polynomials

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We define and investigate the Riesz transform associated with the differential operatorL λ f(θ)=−f"(θ)−2λ cot’θ. We prove that it can be defined as a principal value and that it is bounded onL P ([0, π],dm λ (θ)),dm λ(θ)=sin θdθ, for every 1<p<∞ and of weak type (1,1). The same boundedness properties hold for the maximal operator of the truncated operators. The speed of convergence of the truncated operators is measured in terms of the boundedness inL P (dm λ ), 1<p<∞, and weak type (1,1) of the oscillation and ρ-variation associated to them. Also, a multiplier theorem is proved to get the boundedness of the conjugate function studied by Muckenhoupt and Stein for 1<p<∞ as a corollary of the results for the Riesz transform. Moreover, we find a condition on the weightv which is necessary and sufficient for the existence of a weightu such that the Riesz transform is bounded fromL P (v dm λ ) intoL P (u dm λ ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Burkholder,A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions, inConference on Harmonic Analysis in Honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, 270–286.

    Google Scholar 

  2. J. T. Campbell, R. L. Jones, K. Reinhold and M. Wierdl,Oscillation and variation for the Hilbert transform, Duke Math. J.105 (2000), 59–83.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Dunford and J. T. Schwartz,Linear Operators. I. General Theory, Interscience Publishers, Inc., New York, 1958.

    MATH  Google Scholar 

  4. E. B. Fabes, C. E. Gutiérrez and R. Scotto,Weak-type estimates for the Riesz transforms associated with the Gaussian measure, Rev. Mat. Iberoamericana10 (1994), 229–281.

    MATH  MathSciNet  Google Scholar 

  5. J. García-Cuerva, G. Mauceri, P. Sjögren and J. L. Torrea,Spectral multipliers for the Ornstein-Uhlenbeck semigroup, J. Anal. Math.78 (1999), 281–305.

    Article  MATH  MathSciNet  Google Scholar 

  6. E. Harboure, R. A. Macias, M. T. Menárguez and J. L. Torrea,Oscillation and variation for the gaussian Riesz transforms and Poisson integral, Proc. Roy. Soc. Edinburgh Sect. A135 (2005), 85–104.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. Harboure, J. L. Torrea and B. Viviani,On the search for weighted inequalities for operators related to the Ornstein-Uhlenbeck semigroup, Math. Ann.318 (2000), 341–353.

    Article  MATH  MathSciNet  Google Scholar 

  8. B. Muckenhoupt,Poisson integrals for Hermite and Laguerre expansions, Trans. Amer. Math. Soc.139 (1969), 231–242.

    Article  MATH  MathSciNet  Google Scholar 

  9. B. Muckenhoupt and E. M. Stein,Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc.118 (1965), 17–92.

    Article  MATH  MathSciNet  Google Scholar 

  10. S. Pérez and F. Soria,Operators associated with the Ornstein-Uhlenbeck semigroup, J. London Math. Soc. (2)61 (2000), 857–871.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. L. Rubio de Francia,Weighted norm inequalities and vector valued inequalities, inHarmonic Analysis, (Minneapolis, Minn., 1981), Lecture Notes in Math.908, Springer-Verlag, Berlin-New York, 1982, pp. 86–101.

    Chapter  Google Scholar 

  12. J. L. Rubio de Francia, F. J. Ruiz and J. L. Torrea,Calderón-Zygmund theory for operator-valued kernels, Adv. Math.62 (1986), 7–48.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Sjögren,On the maximal function for the Mehler kernel, inHarmonic Analysis (Cortona, 1982), Lecture Notes in Math.992, Springer-Verlag, Berlin, 1983, pp. 73–82.

    Google Scholar 

  14. E. M. Stein,Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton University Press, Princeton, New Jersey, 1970.

    MATH  Google Scholar 

  15. K. Stempak,Conjugate expansions for ultraspherical functions, Tohoku Math. J. (2),45 (1993), 461–469.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Szegö,Orthogonal Polynomials, American Mathematical Society, New York, 1939.

    Google Scholar 

  17. A. Torchinsky,Real-Variable Methods in Harmonic Analysis, Academic Press, Inc., Orlando, FL, 1986.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Buraczewski.

Additional information

The authors were partially supported by RTN Harmonic Analysis and Related Problems contract HPRN-CT-2001-00273-HARP.

The first and fourth authors were supported in part by KBN grant 1-P93A 018 26.

The second and third authors were partially supported by BFM grant 2002-04013-C02-02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buraczewski, D., Martinez, T., Torrea, J.L. et al. On the Riesz transform associated with the ultraspherical polynomials. J. Anal. Math. 98, 113–143 (2006). https://doi.org/10.1007/BF02790272

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02790272

Keywords

Navigation